当前位置:初中试题 > 数学试题 > 二次函数的应用 > 已知抛物线y=ax2+bx-1经过点A(一1,0)、B(m,0)(m>0),且与y轴交于点C(1)求抛物线对应的函数表达式(用含m的式子表示);(2)如图,⊙M...
题目
题型:不详难度:来源:
已知抛物线y=ax2+bx-1经过点A(一1,0)、B(m,0)(m>0),且与y轴交于点C
(1)求抛物线对应的函数表达式(用含m的式子表示);
(2)如图,⊙M经过A、B、C三点,求扇形MBC(阴影部分)的面积S(用含m的式子表示);
(3)若抛物线上存在点P,使得△APB△ABC,求m的值.
答案
(1)∵点(-1,0)、(m,0)在抛物线y=ax2+bx-1上





a-b-1=0
m2a+mb-1=0

解得





a=
1
m
b=
1-m
m

∴抛物线对应的函数表达式为:y=
1
m
x2+
1-m
m
x-1


(2)在抛物线对应的函数表达式中,令x=0,得y=-1,
∴点C坐标为(0,-1).
∴OA=OC,
∴∠OAC=45°,
∴∠BMC=2∠OAC=90°.
又∵BC=


m2+1
,∴MB=MC=


2
2
BC.
S=
1
4
π•MB2=
1
4
π•(


2
2
BC)2=
π
8
BC2=
(m2+1)π
8


(3)如图,∵△ABC△APB,
∴∠PAB=∠BAC=∠45°,
AB
AP
=
AC
AB

过点P作PD⊥x轴,垂足为D,连接PA、PB,
在Rt△PDA中,
∵∠PAB=∠APD=45°,
∴PD=AD,
设点P坐标为(x,x+1),
∵点P在抛物线上,
x+1=
1
m
x2+
1-m
m
x-1
,即x2+(1-2m)x-2m=0,
解得x1=-1,x2=2m,
∴P1(2m,2m+1),P2(-1,0)(不合题意,舍去),
此进AP=


2
PD=(2m+1)


2
,又由
AB
AP
=
AC
AB
,得AC•AP=AB2


2
(2m+1)


2
=(m+1)2,整理,得m2-2m-1=0,
解得m1=1+


2
,m2=1-


2
(舍去),
m的值是1+


2
核心考点
试题【已知抛物线y=ax2+bx-1经过点A(一1,0)、B(m,0)(m>0),且与y轴交于点C(1)求抛物线对应的函数表达式(用含m的式子表示);(2)如图,⊙M】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
已知抛物线的顶点为(0,4)且与x轴交于(-2,0),(2,0).

(1)直接写出抛物线解析式;
(2)如图,将抛物线向右平移k个单位,设平移后抛物线的顶点为D,与x轴的交点为A、B,与原抛物线的交点为P.
①当直线OD与以AB为直径的圆相切于E时,求此时k的值;
②是否存在这样的k值,使得点O、P、D三点恰好在同一条直线上?若存在,求出k值;若不存在,请说明理由.
题型:不详难度:| 查看答案
某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40元至70元之间.市场调查发现:若每箱以50元销售,平均每天可销售90箱,价格每降低1元,平均每天多销售3箱,价格每升高l元,平均每天少销售3箱.
(1)写出平均每天销售量y(箱)与每箱售价x(元)之间的函数关系式.(注明范围)
(2)求出商场平均每天销售这种牛奶的利润W(元),与每箱牛奶的售价x(元)之间的二次函数关系式.(每箱的利润=售价-进价)
(3)求出(2)中二次函数图象的顶点坐标,并求当x=40,70时W的值.在给出的坐标系中画出函数图象的草图.
(4)由函数图象可以看出,当牛奶售价为多少时,平均每天的利润最大?最大利润为多少
题型:不详难度:| 查看答案
己知:如图1,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(O,-4),与x轴交于A、B两点,点A的坐标为(4,0).
(1)求该抛物线的函数解析式;
(2)点P(t,O)是线段AB上一动点(不与A、B重合),过P点作PEAC,交BC于E,连接CP,求△CPE的面积S与t的函数关系式,并指出t的取值范围;
(3)如图2,若平行于x轴的动直线r与该抛物线交于点Q,与直线AC交于F,点D的坐标为(2,0).问是否存在这样的直线r,使得△0DF为等腰三角形?若存在,请求出点Q坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,直线AC分别交x轴y轴于点A(8,0)、C,抛物线y=-
1
4
x2+bx+c(a≠0)经过A,B两点;且OB=OC=
1
2
OA,一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,交抛物线于点P,连接PB、设直线l移动的时间为t秒,
(1)求抛物线解析式;
(2)当0<t<4时,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积;
(3)在直线l的移动过程中,直线AC上是否存在一点Q,使得P、Q、B、A四点构成的四边形是平行四边形?若存在,请求出点Q的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,点A1、A2、A3、…、An在抛物线y=-x2图象上,点B0、B1、B2、B3、…、Bn在y轴上(点B0与坐标原点O重合),若△A1B0B1、△A2B1B2、…、△AnBn-1Bn都为等腰直角三角形,则A2011B2010的长为(  )
A.2010B.2011C.2010


2
D.2011


2

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.