题目
题型:不详难度:来源:
(1)求抛物线的对称轴,并在所给坐标系中画出对称轴和直线y=x+1;
(2)试求a的取值范围;
(3)若AE⊥x,E为垂足,BF⊥x轴,F为垂足,试求S梯形ABFE的最大值.
答案
(2)方程组
|
得x2-3x+a-1=0.
由题意可知x1,x2是方程x2-3x+a-1=0的两个不相等的根,
∴x1+x2=3,x1•x2=a-1,
∵x2>x1≥0,
∴x1•x2≥0,
得a-1≥0,a≥1,
又△=13-4a>0,
∴a<
13 |
4 |
故1≤a<
13 |
4 |
(3)∵点A,B在直线y=x+1上,
∴y1=x1+1,y2=x2+1,
∴S梯形ABFE=
1 |
2 |
=
1 |
2 |
1 |
2 |
(x1+x2)2-4x1x2 |
5 |
2 |
13-4a |
∵1≤a<
13 |
4 |
∴a=1时,S梯形ABFE取最大值
15 |
2 |
核心考点
试题【已知抛物线y=x2-2x+a与直线y=x+1有两个公共点A(x1,y1),B(x2,y2),且x2>x1≥0.(1)求抛物线的对称轴,并在所给坐标系中画出对称轴】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
(1)求这条抛物线的函数表达式;
(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标;
(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DE∥PC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.
(1)求抛物线的解析式.
(2)求△MCB的面积.
(1)分析与计算:求正方形ODEF的边长;
(2)操作与求解:
①正方形ODEF平行移动过程中,通过操作、观察,试判断S(S>0)的变化情况是______;
A、逐渐增大 B、逐渐减少 C、先增大后减少 D、先减少后增大
②当正方形ODEF顶点O移动到点C时,求S的值;
(3)探究与归纳:
设正方形ODEF的顶点O向右移动的距离为x,求重叠部分面积S与x的函数关系式.
1 |
4 |
(1)求抛物线的顶点坐标;
(2)求出球飞行的最大水平距离;
(3)若小明第二次仍从此处击球,使其最大高度不变,而球刚好进洞,则球飞行的路线满足抛物线的解析式是什么?
(1)当每辆车的月租金定为3600元时,能租出______辆车(直接填写答案);
(2)设每辆车的月租金为x(x≥3000)元,用含x的代数式填空:
(3)每辆车的月租金定为多少元时,租凭公司的月收益最大,最大月收益是多少元?