当前位置:初中试题 > 数学试题 > 二次函数的应用 > 已知抛物线y=x2-2x+a与直线y=x+1有两个公共点A(x1,y1),B(x2,y2),且x2>x1≥0.(1)求抛物线的对称轴,并在所给坐标系中画出对称轴...
题目
题型:不详难度:来源:
已知抛物线y=x2-2x+a与直线y=x+1有两个公共点A(x1,y1),B(x2,y2),且x2>x1≥0.
(1)求抛物线的对称轴,并在所给坐标系中画出对称轴和直线y=x+1;
(2)试求a的取值范围;
(3)若AE⊥x,E为垂足,BF⊥x轴,F为垂足,试求S梯形ABFE的最大值.
答案
(1)对称轴x=1,

(2)方程组





y=x2-2x+a
y=x+1
消去y,
得x2-3x+a-1=0.
由题意可知x1,x2是方程x2-3x+a-1=0的两个不相等的根,
∴x1+x2=3,x1•x2=a-1,
∵x2>x1≥0,
∴x1•x2≥0,
得a-1≥0,a≥1,
又△=13-4a>0,
∴a<
13
4

故1≤a<
13
4


(3)∵点A,B在直线y=x+1上,
∴y1=x1+1,y2=x2+1,
∴S梯形ABFE=
1
2
(AE+BF)×EF,
=
1
2
(y1+y2)(x2-x1)=
1
2
(x1+x2+2)


(x1+x2)2-4x1x2
=
5
2


13-4a

∵1≤a<
13
4

∴a=1时,S梯形ABFE取最大值
15
2

核心考点
试题【已知抛物线y=x2-2x+a与直线y=x+1有两个公共点A(x1,y1),B(x2,y2),且x2>x1≥0.(1)求抛物线的对称轴,并在所给坐标系中画出对称轴】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=-1,与x轴交于A,B两点,与y轴交于点C,其中A(-3,0),C(0,-2)
(1)求这条抛物线的函数表达式;
(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标;
(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DEPC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,D是图象上的一点,M为抛物线的顶点.已知A(-1,0),C(0,5),D(1,8).
(1)求抛物线的解析式.
(2)求△MCB的面积.
题型:不详难度:| 查看答案
如图,在平面直角坐标系中,直角梯形ABCO的边OC落在x轴的正半轴上,且ABOC,BC⊥OC,AB=4,BC=6,OC=8.正方形ODEF的两边分别落在坐标轴上,且它的面积等于直角梯形ABCO面积.将正方形ODEF沿x轴的正半轴平行移动,设它与直角梯形ABCO的重叠部分面积为S.
(1)分析与计算:求正方形ODEF的边长;
(2)操作与求解:
①正方形ODEF平行移动过程中,通过操作、观察,试判断S(S>0)的变化情况是______;
A、逐渐增大 B、逐渐减少 C、先增大后减少 D、先减少后增大
②当正方形ODEF顶点O移动到点C时,求S的值;
(3)探究与归纳:
设正方形ODEF的顶点O向右移动的距离为x,求重叠部分面积S与x的函数关系式.
题型:不详难度:| 查看答案
小明在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y=-
1
4
x2+2x,其中y(m)是球的飞行高度,x(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.
(1)求抛物线的顶点坐标;
(2)求出球飞行的最大水平距离;
(3)若小明第二次仍从此处击球,使其最大高度不变,而球刚好进洞,则球飞行的路线满足抛物线的解析式是什么?
题型:不详难度:| 查看答案
某租凭公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加1辆.租出的车每月需维护费150元,未租出的车每月需维护费50元.
(1)当每辆车的月租金定为3600元时,能租出______辆车(直接填写答案);
(2)设每辆车的月租金为x(x≥3000)元,用含x的代数式填空:
(3)每辆车的月租金定为多少元时,租凭公司的月收益最大,最大月收益是多少元?
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
为租出的车辆数租出的车辆
所有未租出的车每月的维护费租出的车每辆的月收益