当前位置:初中试题 > 数学试题 > 二次函数的应用 > ...
题目
题型:难度:来源:
答案
核心考点
试题【】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,在一块三角形区域ABC中,∠C=90°,边AC=8,BC=6,现要在△ABC内建造一个矩形水池DEFG,如图的设计方案是使DE在AB上.
(1)求△ABC中AB边上的高h;
(2)设DG=x,当x取何值时,水池DEFG的面积最大?
(3)实际施工时,发现在AB上距B点1.85的M处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为保护大树,请设计出另外的方案,使三角形区域中欲建的最大矩形水池能避开大树.
题型:不详难度:| 查看答案
小敏在某次投篮中,球的运动路线是抛物线y=-
1
5
x2+3.5
的一部分(如图),若命中篮圈中心,则他与篮底的距离l是______米.
题型:不详难度:| 查看答案
一拱桥,桥下的水面宽AB=20米,拱高4米,若水面上升3米至EF时,水面宽EF应是多少米?
(1)若你将该拱桥当作抛物线,请你在坐标系中画出该拱桥,并用函数的知识来求出EF的长.
(2)若你将拱桥看作圆的一部分,请你用圆的有关知识画图,并解答.
(3)从中你得到什么启示.(用一句话回答.)
题型:不详难度:| 查看答案
如图,抛物线y=


3
3
x2+
2
3


3
x-


3
交x轴于A、B两点,交y轴于点C,顶点为D.
(1)求点A、B、C的坐标;
(2)把△ABC绕AB的中点M旋转180°,得到四边形AEBC,求E点的坐标;
(3)试判断四边形AEBC的形状,并说明理由.
题型:不详难度:| 查看答案
如图,在矩形ABCD中,AB=2


2
,AD=1.点P在AC上,PQ⊥BP,交CD于Q,PE⊥CD,交于CD于E.点P从A点(不含A)沿AC方向移动,直到使点Q与点C重合为止.
(1)设AP=x,△PQE的面积为S.请写出S关于x的函数解析式,并确定x的取值范围.
(2)点P在运动过程中,△PQE的面积是否有最大值?若有,请求出最大值及此时AP的取值;若无,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.