当前位置:初中试题 > 数学试题 > 二次函数的应用 > 二次函数y=x2+bx+c的图象如图所示,其顶点坐标为M(1,-4).(1)求二次函数的解析式;(2)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分...
题目
题型:不详难度:来源:
二次函数y=x2+bx+c的图象如图所示,其顶点坐标为M(1,-4).
(1)求二次函数的解析式;
(2)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合新图象回答:当直线y=x+n与这个新图象有两个公共点时,求n的取值范围.
答案
(1)因为M(1,-4)是二次函数y=(x+m)2+k的顶点坐标,
所以y=(x-1)2-4=x2-2x-3,

(2)令x2-2x-3=0,
解之得:x1=-1,x2=3,
故A,B两点的坐标分别为A(-1,0),B(3,0).
如图,当直线y=x+n(n<1),
经过A点时,可得n=1,
当直线y=x+n经过B点时,
可得n=-3,
∴n的取值范围为-3<n<1,
翻折后的二次函数解析式为二次函数y=-x2+2x+3
当直线y=x+n与二次函数y=-x2+2x+3的图象只有一个交点时,
x+n=-x2+2x+3,
整理得:x2-x+n-3=0,
△=b2-4ac=1-4(n-3)=13-4n=0,
解得:n=
13
4

∴n的取值范围为:n>
13
4

由图可知,符合题意的n的取值范围为:n>
13
4
或-3<n<1.
核心考点
试题【二次函数y=x2+bx+c的图象如图所示,其顶点坐标为M(1,-4).(1)求二次函数的解析式;(2)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
直线l过点A(4,0)和B(0,4)两点,它与二次函数y=ax2的图象在第一象限内交于点P,若S△AOP=
9
2
,求二次函数关系式.
题型:不详难度:| 查看答案
已知二次函数y=ax2+bx+c的图象经过点A(-1,0),B(2,0),C(0,-2),那么这个二次函数的解析式为______.
题型:不详难度:| 查看答案
如图,一边靠校园围墙,其他三边用总长为40米的铁栏杆围成一个矩形花圃,设矩形ABCD的边AB为x米,面积为S平方米,要使矩形ABCD面积最大,则x的长为(  )
A.10米B.15米C.20米D.25米

题型:不详难度:| 查看答案
在如图的直角坐标系中,已知点A(1,0);B(0,-2),将线段AB绕点A按逆时针方向旋转90°至AC.
(1)求点C的坐标;
(2)若抛物线y=-
1
2
x2+ax+2经过点C.
①求抛物线的解析式;
②在抛物线上是否存在点P(点C除外)使△ABP是以AB为直角边的等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知抛物线y=ax2-2ax+c与y轴交于C点,与x轴交于A、B两点,点A的坐标是(-1,0),O是坐标原点,且|OC|=3|OA|
(1)求抛物线的函数表达式;
(2)直接写出直线BC的函数表达式;
(3)如图1,D为y轴的负半轴上的一点,且OD=2,以OD为边作正方形ODEF.将正方形ODEF以每秒1个单位的速度沿x轴的正方向移动,在运动过程中,设正方形ODEF与△OBC重叠部分的面积为s,运动的时间为t秒(0<t≤2).
求:①s与t之间的函数关系式;
②在运动过程中,s是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.
(4)如图2,点P(1,k)在直线BC上,点M在x轴上,点N在抛物线上,是否存在以A、M、N、P为顶点的平行四边形?若存在,请直接写出M点坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.