当前位置:初中试题 > 数学试题 > 二次函数的应用 > (以下两小题选做一题,第1小题满分14分,第2小题满分为10分.若两小题都做,以第1小题计分)选做第______小题.(1)一张矩形纸片OABC平放在平面直角坐...
题目
题型:不详难度:来源:
(以下两小题选做一题,第1小题满分14分,第2小题满分为10分.若两小题都做,以第1小题计分)
选做第______小题.
(1)一张矩形纸片OABC平放在平面直角坐标系内,O为原点,点A在x的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.
①如图,将纸片沿CE对折,点B落在x轴上的点D处,求点D的坐标;
②在①中,设BD与CE的交点为P,若点P,B在抛物线y=x2+bx+c上,求b,c的值;
③若将纸片沿直线l对折,点B落在坐标轴上的点F处,l与BF的交点为Q,若点Q在②的抛物线上,求l的解析式.
(2)一张矩形纸片OABC平放在平面直角坐标系内,O为原点,点A在x的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.
①求直线AC的解析式;
②若M为AC与BO的交点,点M在抛物线y=-
8
5
x2+kx上,求k的值;
③将纸片沿CE对折,点B落在x轴上的点D处,试判断点D是否在②的抛物线上,并说明理由.
答案
(1)①根据题意知,CD=CB=OA=5
∵∠COD=90°
∴CD=


CD2-OC2
=3
∴D点坐标为(3,0)
②过P作PG⊥x轴于G

据题知,PG=
1
2
AB=2,DG=
1
2
AD=1
∴P点坐标(4,2)
∵点P,B在抛物线y=x2+bx+c上
∴b=-7,c=14
③当点F在x轴上时,过Q作QM⊥x轴于M

同②可知QM=
1
2
AB=2,则Q点的纵坐标为2
得x2-7x+14=2
∴x=3或x=4
∴Q点的坐标为(3,2)或(4,2)
当Q点坐标为(3,2)时,如图,OM=3,MA=2,FA=4
AB=4
FA=AB,而l为BF的中垂线
∴点A在l上
∴l的解析式为y=-x+5.
当Q点坐标为(4,2)时,如图,OM=4,MA=1,OF=3,CF=5,而CB=5;
∴CF=CB
∵l为BF的中垂线
∴点C在l上.
∴l的解析式为y=-
1
2
x+4.
当点F在y轴上时,可求得Q(
5
2
11
4
),l与y轴的交点为(0,
31
4

∴l的解析式为y=-2x+
31
4

综上所述,l的解析式为y=-x+5或y=-
1
2
x+4或y=-2x+
31
4

(2)①∵OA=5,OC=4,
∴A(5,0),C(0,4);
∴直线AC的解析式为y=-
4
5
x+4.
②可知:M点坐标为(
5
2
,2).
由题设知:-
8
5
5
2
2+k•
5
2
=2.
∴k=
24
5

③∵CD=BC=OA=5,OC=4,∠COD=90°
∴OD=3,即D(3,0).
当x=3时,y=-
8
5
×32+
24
5
×3=0
∴点D在抛物线上.
核心考点
试题【(以下两小题选做一题,第1小题满分14分,第2小题满分为10分.若两小题都做,以第1小题计分)选做第______小题.(1)一张矩形纸片OABC平放在平面直角坐】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
已知,抛物线y=ax2-2ax与x轴交于A、B两点(点A在点B的右侧),且抛物线与直线y=-2ax-1的交点恰为抛物线的顶点C.
(1)求a的值;
(2)如果直线y=-x+b(


2
≤b≤


3
)与x轴交于点D,与线段BC交于点E,求△CDE面积的最大值;
(3)在(2)的结论下,在x轴下方,是否存在点F,使△BDF与△BCD相似?如果存在,请求出点F的坐标;不存在,请说明理由.
题型:不详难度:| 查看答案
已知抛物线y=kx2+2kx-3k,交x轴于A、B两点(A在B的左边),交y轴于C点,且y有最大值4.
(1)求抛物线的解析式;
(2)在抛物线上是否存在点P,使△PBC是直角三角形?若存在,求出P点坐标;若不存在,说明理由.
题型:不详难度:| 查看答案
据统计每年由于汽车超速行驶而造成的交通事故是造成人员死亡的主要原因之一.行驶中的汽车,在刹车后由于惯性的原因,还要继续向前滑行一段距离才能停住,这段距离称为“刹车距离”.为了测定某种型号汽车的刹车性能(车速不超过140千米/时),对这种汽车的刹车距离进行测试,测得的数据如下表:
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
刹车时车速(千米/时)051015202530
刹车距离(米)00.10.30.611.52.1
如图,矩形OABC的两边在坐标轴上,且A(0,-2),AB=4,连接AC,抛物线y=x2+bx+c经过A,B两点.点P由点A出发以每秒1个单位的速度沿AB边向点B移动,1秒后点Q也由点A出发以每秒7个单位的速度沿AO,OC,CB边向点B移动,当其中一个点到达终点时另一个点也停止移动.
(1)求抛物线的解析式;
(2)当P运动到OC上时,设点P的移动时间为t秒,当PQ⊥AC时,求t的值;
(3)当PQAC时,对于抛物线对称轴上一点H,∠HOQ>∠POQ,求点H的纵坐标的取值范围.
如图,在平面直角坐标系xOy中,已知矩形OACB的边OA,OB分别在x轴上和y轴上,线段OA,OB的长分别是一元二次方程x2-18x+72=0的两个根,且OA>OB;点P从点O开始沿OA边匀速移动,点M从点B开始沿BO边匀速移动.如果点P,点M同时出发,它们移动的速度相同,设OP=x(0≤x≤6),设△POM的面积为y.
(1)求y与x的函数关系式;
(2)连接矩形的对角线AB,当x为何值时,以P,O,M为顶点的三角形与△AOB相似;
(3)当△POM的面积最大时,将△POM沿PM所在直线翻折后得到△PDM,试判断D点是否在矩形的对角线AB上,请说明理由.