题目
题型:不详难度:来源:
(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?
(成本=进价×销售量)
答案
=(x-20)•(-10x+500)=-10x2+700x-10000,
x=-
b |
2a |
答:当销售单价定为35元时,每月可获得最大利润.
(2)由题意,得:-10x2+700x-10000=2000,
解这个方程得:x1=30,x2=40,
答:李明想要每月获得2000元的利润,销售单价应定为30元或40元.
(3)∵a=-10<0,
∴抛物线开口向下,
∴当30≤x≤40时,w≥2000,
∵x≤32,
∴当30≤x≤32时,w≥2000,
设成本为P(元),由题意,得:P=20(-10x+500)=-200x+10000,
∵a=-200<0,
∴P随x的增大而减小,
∴当x=32时,P最小=3600,
答:想要每月获得的利润不低于2000元,每月的成本最少为3600元.
核心考点
试题【某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
(1)A点坐标为(______),B点坐标为(______);
(2)求过A、B、D三点的抛物线方程;
(3)若(2)中抛物线过点C,求C点坐标;
(4)若动点P从点C出发沿C⇒B⇒x正方向,同时Q点从点A出发沿A⇒B⇒C方向(终点C)运动,且P、Q两点运动速度分别为
5 |