当前位置:初中试题 > 数学试题 > 二次函数的应用 > 某抛物线型拱桥的示意图如图,已知该抛物线的函数表达式为y=-148x2+12,为保护该桥的安全,在该抛物线上的点E、F处要安装两盏警示灯(点E、F关于y轴对称)...
题目
题型:不详难度:来源:
某抛物线型拱桥的示意图如图,已知该抛物线的函数表达式为y=-
1
48
x2+12
,为保护该桥的安全,在该抛物线上的点E、F处要安装两盏警示灯(点E、F关于y轴对称),这两盏灯的水平距离EF是24米,则警示灯F距水面AB的高度是______米.
答案
由于两盏灯的水平距离EF是24米,则E、F两点的横坐标为xE=-12,xF=12;
代入抛物线y=-
1
48
x2+12

即y=-
1
48
×122+12=9.
所以警示灯F距水面AB的高度是9米.
故答案为:9.
核心考点
试题【某抛物线型拱桥的示意图如图,已知该抛物线的函数表达式为y=-148x2+12,为保护该桥的安全,在该抛物线上的点E、F处要安装两盏警示灯(点E、F关于y轴对称)】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价y1(元)与销售月份x(月)满足关系式y=-
3
8
x+36,而其每千克成本y2(元)与销售月份x(月)满足的函数关系如图所示.
(1)试确定b、c的值;
(2)求出这种水产品每千克的利润y(元)与销售月份x(月)之间的函数关系式;
(3)“五•一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?
题型:不详难度:| 查看答案
抛物线y=ax2+bx+c(a>0)经过点A(-3


3
,0
),B(


3
,0
)与y轴交于点C,设抛物线的顶点为D,在△BCD中,边CD的高为h.
(1)若c=ka,求系数k的值;
(2)当∠ACB=90°,求a及h的值;
(3)当∠ACB≥90°时,经过探究、猜想请你直接写出h的取值范围.
(不要求书写探究、猜想的过程)
题型:不详难度:| 查看答案
将二次函数y=2x2-8x-5的图象沿它的对称轴所在直线向上平移,得到一条新的抛物线,这条新的抛物线与直线y=kx+1有一个交点为(3,4).
求:(1)新抛物线的解析式及后的值;
(2)新抛物线与y=kx+1的另一个交点的坐标.
题型:不详难度:| 查看答案
已知二次函数的图象经过点A(0,-3),且顶点P的坐标为(1,-4),
(1)求这个函数的关系式;
(2)在平面直角坐标系中,画出它的图象.
题型:不详难度:| 查看答案
如图,在直角坐标系xOy中,点P为函数y=
1
4
x2在第一象限内的图象上的任一点,点A的坐标为(0,1),直线l过B(0,-1)且与x轴平行,过P作y轴的平行线分别交x轴,l于C,Q,连接AQ交x轴于H,直线PH交y轴于R.
(1)求证:H点为线段AQ的中点;
(2)求证:①四边形APQR为平行四边形;②平行四边形APQR为菱形;
(3)除P点外,直线PH与抛物线y=
1
4
x2有无其它公共点并说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.