当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,已知二次函数y=x2-3x-4的图象交x轴于A、B两点.(1)若点P在线段AB上运动,作PQ⊥x轴,交抛物线于点Q,求PQ的最大值;(2)已知点D(5,6...
题目
题型:不详难度:来源:
如图,已知二次函数y=x2-3x-4的图象交x轴于A、B两点.
(1)若点P在线段AB上运动,作PQ⊥x轴,交抛物线于点Q,求PQ的最大值;
(2)已知点D(5,6)在抛物线上,若点M在线段AD上运动,作MN⊥x轴,交抛物线于点N,求MN的最大值;
(3)在(2)的运动过程中,求△ADN面积的最大值.
答案
(1)当Q为抛物线的顶点时,PQ取得最大值.
∵y=x2-3x-4=(x-
3
2
2-
25
4

∴点Q坐标为(
3
2
,-
25
4
),
∴PQ的最大值为
25
4


(2)∵D(5,6),A(-1,0),
设直线AD的解析式为:y=kx+b,则





5k+b=6
-k+b=0

解得





k=1
b=1

∴直线AD的解析式为:y=x+1;
设M(x,x+1),则N(x,x2-3x-4),
∴MN=x+1-(x2-3x-4)=-x2+4x+5=-(x-2)2+9,
∴当x=2时,MN的最大值为9;

(3)S△ADN=S△ANM+S△MDN=
1
2
MN•(5+1)=3MN,
∴由(2)的结论可得,当x=2时,△ADN面积的最大值为27.
核心考点
试题【如图,已知二次函数y=x2-3x-4的图象交x轴于A、B两点.(1)若点P在线段AB上运动,作PQ⊥x轴,交抛物线于点Q,求PQ的最大值;(2)已知点D(5,6】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图①,抛物线经过点A(12,0)、B(-4,0)、C(0,-12).顶点为M,过点A的直线y=kx-4交y轴于点N.
(1)求该抛物线的函数关系式和对称轴;
(2)试判断△AMN的形状,并说明理由;
(3)将AN所在的直线l向上平移.平移后的直线l与x轴和y轴分别交于点D、E(如图②).当直线l平移时(包括l与直线AN重合),在抛物线对称轴上是否存在点P,使得△PDE是以DE为直角边的等腰直角三角形?若存在,直接写出所有满足条件的点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x-m)2+n的顶点在线段AB上运动(抛物线随顶点一起平移),与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为-3,则点D的横坐标最大值为(  )
A.-3B.1C.5D.8

题型:不详难度:| 查看答案
如图,抛物线y1=a(x+2)2-3与y2=
1
2
(x-3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:
①无论x取何值,y2的值总是正数;
②a=1;
③当x=0时,y2-y1=4
④2AB=3AC.
其中正确结论是______.
题型:不详难度:| 查看答案
已知:抛物线y=ax2+bx+c(a≠0),顶点C(1,-3),与x轴交于A,B两点,A(-1,0).
(1)求这条抛物线的解析式;
(2)如图,以AB为直径作圆,与抛物线交于点D,与抛物线对称轴交于点E,依次连接A,D,B,E,点P为线段AB上一个动点(P与A,B两点不重合),过点P作PM⊥AE于M,PN⊥DB于N,请判断
PM
BE
+
PN
AD
是否为定值?若是,请求出此定值;若不是,请说明理由;
(3)在(2)的条件下,若点S是线段EP上一点,过点S作FG⊥EP,FG分别与边AE,BE相交于点F,G(F与A,E不重合,G与E,B不重合),请判断
PA
PB
=
EF
EG
是否成立?若成立,请给出证明;若不成立,请说明理由.
题型:不详难度:| 查看答案
如图,已知抛物线y=mx2+nx+p与y=x2+6x+5关于y轴对称,与y轴交于点M,与x轴交于点A和B.
(1)y=mx2+nx+p的解析式为______,试猜想出与一般形式抛物线y=ax2+bx+c关于y轴对称的二次函数解析式为______.
(2)A,B的中点是点C,则sin∠CMB=______.
(3)如果过点M的一条直线与y=mx2+nx+p图象相交于另一点N(a,b),a,b满足a2-a+m=0,b2-b+m=0,则点N的坐标为______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.