当前位置:初中试题 > 数学试题 > 二次函数的应用 > 已知:如图,抛物线y=-x2+bx+c经过直线y=-x+3与坐标轴的两个交点A、B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.(1)求此抛物线的解析式;...
题目
题型:不详难度:来源:
已知:如图,抛物线y=-x2+bx+c经过直线y=-x+3与坐标轴的两个交点A、B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.
(1)求此抛物线的解析式;
(2)点M为抛物线上的一个动点,求使得△ABM的面积与△ABD的面积相等的点M的坐标.
答案
(1)直线y=-x+3与坐标轴的两个交点坐标分别是
A(3,0),B(0,3),
抛物线y=-x2+bx+c经过A、B两点,
c=3
-9+3b+c=0,
得到b=2,c=3,
∴抛物线的解析式y=-x2+2x+3.

(2)①作经过点D与直线y=-x+3平行的直线交抛物线于点M.

则S△ABM=S△ABD
直线DM的解析式为y=-x+t.
由抛物线解析式y=-x2+2x+3=-(x-1)2+4,
得D(1,4),
∴t=5.
设M(m,-m+5),
则有-m+5=-m2+2m+3,
解得m=1(舍去),m=2.
∴M(2,3).
②易求直线DM关于直线y=-x+3对称的直线l的解析式为y=-x+1,l交抛物线于M.
设M(m,-m+1).
由于点M在抛物线y=-x2+2x+3上,
∴-m+1=-m2+2m+3.
解得m=
3+


17
2
,m=
3-


17
2

∴M(
3+


17
2
,-
1+


17
2
)或M(
3-


17
2
-1+


17
2

∴使△ABM的面积与△ABD的面积相等的点M的坐标分别是
(2,3),(
3+


17
2
,-
1+


17
2
),(
3-


17
2
-1+


17
2
).
核心考点
试题【已知:如图,抛物线y=-x2+bx+c经过直线y=-x+3与坐标轴的两个交点A、B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.(1)求此抛物线的解析式;】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,在直角坐标系中,点O为原点,直线y=kx+b与x轴交于点A(3,0),与y轴的正半轴交于点B,tan∠OAB=


3

(1)求这直线的解析式;
(2)将△OAB绕点A顺时针旋转60°后,点B落到点C的位置,求以点C为顶点且经过点A的抛物线的解析式;
(3)设(2)中的抛物线与x轴的另一个交点为点D,与y轴的交点为E.试判断△ODE是否与△OAB相似?如果认为相似,请加以证明;如果认为不相似,也请说明理由.
题型:不详难度:| 查看答案
如图,在平面直角坐标系中,以点0′(-2,-3)为圆心,5为半径的圆交x轴于A、B两点,过点B作⊙O′的切线,交y轴于点C,过点0′作x轴的垂线MN,垂足为D,一条抛物线(对称轴与y轴平行)经过A、B两点,且顶点在直线BC上.
(1)求直线BC的解析式;
(2)求抛物线的解析式;
(3)设抛物线与y轴交于点P,在抛物线上是否存在一点Q,使四边形DBPQ为平行四边形?若存在,请求出点Q的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图所示是一个抛物线形桥拱的示意图,在所给出的平面直角坐标系中,当水位在AB位置时,水面宽度为10m,此时水面到桥拱的距离是4m,则抛物线的函数关系式为(  )
A.y=
25
4
x2
B.y=-
25
4
x2
C.y=-
4
25
x2
D.y=
4
25
x2

题型:不详难度:| 查看答案
如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,且AB=3,BC=2


3
,直线y=


3
x-2


3
经过点C,交y轴于点G.
(1)点C、D的坐标分别是C______,D______;
(2)求顶点在直线y=


3
x-2


3
上且经过点C、D的抛物线的解析式;
(3)将(2)中的抛物线沿直线y=


3
x-2


3
平移,平移后的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧).平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,已知⊙P的半径为3,圆心P在抛物线y=
1
2
x2上运动,当⊙P与x轴相切时,圆心P的坐标为(  )
A.(


6
,3)
B.(


3
,3)
C.(


6
,3)或(-


6
,3)
D.(


3
,3)或(-


3
,3)

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.