当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图所示是一个抛物线形桥拱的示意图,在所给出的平面直角坐标系中,当水位在AB位置时,水面宽度为10m,此时水面到桥拱的距离是4m,则抛物线的函数关系式为(  )...
题目
题型:不详难度:来源:
如图所示是一个抛物线形桥拱的示意图,在所给出的平面直角坐标系中,当水位在AB位置时,水面宽度为10m,此时水面到桥拱的距离是4m,则抛物线的函数关系式为(  )
A.y=
25
4
x2
B.y=-
25
4
x2
C.y=-
4
25
x2
D.y=
4
25
x2

答案
依题意设抛物线解析式y=ax2
把B(5,-4)代入解析式,
得-4=a×52
解得a=-
4
25

所以y=-
4
25
x2
故选C.
核心考点
试题【如图所示是一个抛物线形桥拱的示意图,在所给出的平面直角坐标系中,当水位在AB位置时,水面宽度为10m,此时水面到桥拱的距离是4m,则抛物线的函数关系式为(  )】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,且AB=3,BC=2


3
,直线y=


3
x-2


3
经过点C,交y轴于点G.
(1)点C、D的坐标分别是C______,D______;
(2)求顶点在直线y=


3
x-2


3
上且经过点C、D的抛物线的解析式;
(3)将(2)中的抛物线沿直线y=


3
x-2


3
平移,平移后的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧).平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,已知⊙P的半径为3,圆心P在抛物线y=
1
2
x2上运动,当⊙P与x轴相切时,圆心P的坐标为(  )
A.(


6
,3)
B.(


3
,3)
C.(


6
,3)或(-


6
,3)
D.(


3
,3)或(-


3
,3)

题型:不详难度:| 查看答案
下表给出了x与函数y=x2+bx+c的一些对应值:
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
x0136
y50-45
如图,已知抛物线y=-x2+bx+c与x轴负半轴交于点A,与y轴正半轴交于点B,且OA=OB.
(1)求b+c的值;
(2)若点C在抛物线上,且四边形OABC是平行四边形,求抛物线的解析式;
(3)在(2)条件下,点P(不与A、C重合)是抛物线上的一点,点M是y轴上一点,当△BPM是等腰直角三角形时,求点M的坐标.
已知抛物线y=-x2+bx+c与x轴的两个交点分别为A(x1,0),B(x2,0)(A在B的左边),且x1+x2=4.
(1)求b的值及c的取值范围;
(2)如果AB=2,求抛物线的解析式;
(3)设此抛物线与y轴的交点为C,顶点为D,对称轴与x轴的交点为E,问是否存在这样的抛物线,使△AOC≌BED全等,如果存在,求出抛物线的解析式;如果不存在,请说明理由.