当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图1,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)连结CA,CB,对称轴x=1与线段AB交于...
题目
题型:不详难度:来源:
如图1,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
(1)求抛物线和直线AB的解析式;
(2)连结CA,CB,对称轴x=1与线段AB交于点D,求△CAB的铅垂高CD及S△CAB
(3)如图2,点P是抛物线(在第一象限内)上的一个动点,连结PA,PB,是否存在一点P,使S△PAB=
9
8
S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.
答案
(1)∵抛物线的顶点为(1,4),
设抛物线的解析式为y=a(x-1)2+4,
把点A(3,0)代入得:0=a(3-1)2+4,
解得:a=-1,
∴抛物线的解析式为:y=-(x-1)2+4,
即y=-x2+2x+3,
当x=0时,y=3,
∴点B的坐标为(0,3),
设直线AB的解析式为y=kx+b,
把点(3,0),B(0,3)代入得,





0=3k+b
3=b

解得





k=-1
b=3

∴直线的解析式为:y=-x+3;

(2)把x=1代入y=-x+3得:y=2,
则CD=4-2=2,
设对称轴x=1与x轴交于点H,
S△CAB=
1
2
CD•OH+
1
2
CD•HA=
1
2
CD•OA=
1
2
×2×3=3;

(3)过点P作PE⊥x轴交线段AB于点F,
设点P(x,-x2+2x+3),则点F(x,-x+3),PF=-x2+2x+3-(-x+3)=-x2+3x,
S△PAB=
1
2
PF•OA=
1
2
×3(-x2+3x)=-
3
2
x2+
9
2
x(0<x<3),
要使S△PAB=
9
8
S△CAB
则有-
3
2
x2+
9
2
x=
9
8
×3,即4x2-12x+9=0,
解得:x1=x2=
3
2

当x=
3
2
时,y=-x2+2x+3=
15
4

∴点P的坐标为(
3
2
15
4
).
核心考点
试题【如图1,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)连结CA,CB,对称轴x=1与线段AB交于】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,在平面直角坐标系中,半径分别为3


3


3
的⊙O1和⊙O2外切于原点O,在x轴上方的两圆的外公切线AB与⊙O1和⊙O2分别切于点A、B,直线AB交y轴于点C.O2D⊥O1A于点D.
(1)求∠O1O2D的度数;
(2)求点C的坐标;
(3)求经过O1、C、O2三点的抛物线的解析式;
(4)在抛物线上是否存在点P,使△PO1O2为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
用长为6m的铝合金型材做一个形状如图所示的矩形窗框,要使做成的窗框的透光面积最大,则该窗的长,宽应分别做成(  )
A.1.5m,1mB.1m,0.5mC.2m,1mD.2m,0.5m

题型:不详难度:| 查看答案
如图,要设计一个等腰梯形的花坛,花坛上底120米,下底180米,上下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为x米.
(1)用含x的式子表示横向甬道的面积;
(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;
(3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?
题型:不详难度:| 查看答案
已知:直线y=2x+6与x轴和y轴分别交于A、C两点,抛物线y=-x2+bx+c经过点A、C,点B是抛物线与x轴的另一个交点.
(1)求抛物线的解析式及B的坐标;
(2)设点P是直线AC上一点,且S△ABP:S△BPC=1:3,求点P的坐标;
(3)直线y=
1
2
x+a与(1)中所求的抛物线交于M、N两点,问:是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知二次函数y=-
1
2
x2+bx+c的图象经过点A(-3,-6),并与x轴交于点B(-1,0)和点C,顶点为P.
(1)求二次函数的解析式;
(2)设点M为线段OC上一点,且∠MPC=∠BAC,求点M的坐标;
说明:若(2)你经历反复探索没有获得解题思路,请你在不改变点M的位置的情况下添加一个条件解答此题,此时(2)最高得分为3分.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.