当前位置:初中试题 > 数学试题 > 二次函数的应用 > 已知抛物线y=-23x2+bx+c与x轴交于不同的两点A(x1,0)和B(x2,0),与y轴交于点C,且x1,x2是方程x2-2x-3=0的两个根(x1<x2)...
题目
题型:不详难度:来源:
已知抛物线y=-
2
3
x2+bx+c
与x轴交于不同的两点A(x1,0)和B(x2,0),与y轴交于点C,且x1,x2是方程x2-2x-3=0的两个根(x1<x2).
(1)求抛物线的解析式;
(2)过点A作ADCB交抛物线于点D,求四边形ACBD的面积;
(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作平行于x轴的直线l交BC于点Q,那么在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.
答案
(1)解方程x2-2x-3=0,
得x1=-1,x2=3.
∴点A(-1,0),点B(3,0).





-
2
3
×(-1)2+b•(-1)+c=0
-
2
3
×32+b•3+c=0

解,得





b=
4
3
c=2

∴抛物线的解析式为y=-
2
3
x2+
4
3
x+2.

(2)∵抛物线与y轴交于点C.
∴点C的坐标为(0,2).
又点B(3,0),可求直线BC的解析式为y=-
2
3
x+2.
∵ADCB,
∴设直线AD的解析式为y=-
2
3
x+b′.
又点A(-1,0),
∴b′=-
2
3
,直线AD的解析式为y=-
2
3
x-
2
3






y=-
2
3
x2+
4
3
x+2
y=-
2
3
x-
2
3






x1=-1
y1=0





x2=4
y2=-
10
3

∴点D的坐标为(4,-
10
3
).
过点D作DD’⊥x轴于D’,DD’=
10
3
,则又AB=4.
∴四边形ACBD的面积S=
1
2
AB•OC+
1
2
AB•DD’=10
2
3


(3)假设存在满足条件的点R,设直线l交y轴于点E(0,m),
∵点P不与点A、C重合,
∴0<m<2,
∵点A(-1,0),点C(0,2),
∴可求直线AC的解析式为y=2x+2,
∴点P(
1
2
m-1,m).
∵直线BC的解析式为y=-
2
3
x+2,
∴点Q(-
3
2
m+3,m).
∴PQ=-2m+4.在△PQR中,
①当RQ为底时,过点P作PR1⊥x轴于点R1,则∠R1PQ=90°,PQ=PR1=m.
∴-2m+4=m,
解得m=
4
3

∴点P(-
1
3
4
3
),
∴点R1坐标为(-
1
3
,0).
②当RP为底时,过点Q作QR2⊥x轴于点R2
同理可求,点R2坐标为(1,0).
③当PQ为底时,取PQ中点S,过S作SR3⊥PQ交x轴于点R3
则PR3=QR3,∠PR3Q=90度.
∴PQ=2R3S=2m.
∴-2m+4=2m,
解,得m=1,
∴点P(-
1
2
,1),点Q(
3
2
,1),可求点R3坐标为(
1
2
,0).
经检验,点R1,点R2,点R3都满足条件.
综上所述,存在满足条件的点R,它们分别是R1-
1
3
,0),R2(1,0)和点R3
1
2
,0).
核心考点
试题【已知抛物线y=-23x2+bx+c与x轴交于不同的两点A(x1,0)和B(x2,0),与y轴交于点C,且x1,x2是方程x2-2x-3=0的两个根(x1<x2)】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),直线l是抛物线的对称轴.
(1)求该抛物线的解析式.
(2)若过点A(-1,0)的直线AB与抛物线的对称轴和x轴围成的三角形面积为6,求此直线的解析式.
(3)点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切,求点P的坐标.
题型:不详难度:| 查看答案
如图,已知二次函数的图象与x轴交于A(2,0)、B(6,0)两点,与y轴交于点D(0,4).
(1)求该二次函数的表达式;
(2)写出该抛物线的顶点C的坐标;
(3)求四边形ACBD的面积?
题型:不详难度:| 查看答案
如图,临沂三河口大桥有一段抛物线行的工桥梁,抛物线的表达式为y=ax2+bx,小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和20秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需______秒.
题型:不详难度:| 查看答案
如图,在直角坐标系内,O为坐标原点,点A的坐标为(1,0),点B在x轴上且在点A的右端,OA=AB,分别过点A、B作x轴的垂线,与二次函数y=x2的图象交于C、D两点,分别过点C、D作y轴的垂线,交y轴于点E、F,直线CD交y轴于点H.
(1)验证:S矩形OACE:S梯形ECDF=2:9;
(2)如果点A的坐标改为(t,0)(t>0),其他条件不变,(1)的结论是否成立?请说明理由.
(3)如果点A的坐标改为(t,0)(t>0),二次函数改为y=ax2(a>0),其他条件不变,记点C、D的横坐标分别为xC、xD,点H的横坐标为yH,试证明:xCxD=-
1
a
yH

题型:不详难度:| 查看答案
如图,在矩形OABC中,OA=8,OC=4,OA、OC分别在x,y轴上,点D在OA上,且CD=AD,
(1)求直线CD的解析式;
(2)求经过B、C、D三点的抛物线的解析式;
(3)在上述抛物线上位于x轴下方的图象上,是否存在一点P,使△PBC的面积等于矩形的面积?若存在,求出点P的坐标,若不存在请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.