当前位置:初中试题 > 数学试题 > 二次函数定义 > 已知,如图,抛物线与轴交于点,与轴交于点,点的坐标为,对称轴是.(1)求该抛物线的解析式;(2)点是线段上的动点,过点作∥,分别交轴、于点P、,连接.当的面积最...
题目
题型:不详难度:来源:
已知,如图,抛物线轴交于点,与轴交于点,点的坐标为,对称轴是
(1)求该抛物线的解析式;
(2)点是线段上的动点,过点,分别交轴、于点P、,连接.当的面积最大时,求点的坐标;
(3)在(2)的条件下,求的值.
答案
(1)由题意,得解得
所求抛物线的解析式为:
(2)设点的坐标为,过点轴于点
,得
∴点的坐标为

,∴.∴
.  ∴



 


∴当时,有最大值3,此时
(3)∵  、 、
是等腰直角三角形



是等腰直角三角形
∴ 点P的坐标为




∴  
解析
(1)由抛物线y=ax2+bx+4(a≠0)与y轴交于点C,与x轴交于点A,B,点A的坐标为(-4,0),对称轴是x=-1,利用待定系数法求解即可求得二次函数的解析式;
(2)由(1)即可求得点B的坐标,则可求得AB与BM的长,又由MN∥AC,即可证得△BMN∽△BAC,利用相似三角形的对应边成比例,即可求得NE的长,SCMN=SCBM-SNBM,求得SCMN=- (m+1)2+3,则可求得△CMN的面积最大时,点M的坐标;
(3)由A(-4,0)、B(2,0)、C(0,4)、M(-1,0),则可证得△AOC是等腰直角三角形,求得AC的长,又由MN∥AC,证得△MOP是等腰直角三角形,即可求得△CPM的面积,然后由SCPN=SCMN-SCPM求得△CPN的面积,又由SABC=AB•OC=12,求其比值即可求得答案.
核心考点
试题【已知,如图,抛物线与轴交于点,与轴交于点,点的坐标为,对称轴是.(1)求该抛物线的解析式;(2)点是线段上的动点,过点作∥,分别交轴、于点P、,连接.当的面积最】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
如图1,在平面直角坐标系中,点A的坐标为(1,2),点B的坐标为(3,1),二次函数y=x2的图象记为抛物线l1
(1)平移抛物线l1,使平移后的抛物线过点A,但不过点B,写出平移后的一个抛物线的函数表达式(任写一个即可);
(2)平移抛物线l1,使平移后的抛物线过A,B两点,记为抛物线l2,如图2,求抛物线l2的函数表达式;
(3)设抛物线l2的顶点为C,K为y轴上一点.若S△ABK=S△ABC,求点K的坐标;
(4)请在图3上用尺规作图的方式探究抛物线l2上是否存在点P,使△ABP为等腰三角形.若存在,请判断点P共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,抛物线,OA=OC,下列关系中正确的是
A.ac+1=bB.ab+1=cC.bc+1="a" D.

题型:不详难度:| 查看答案
将抛物线c1沿x轴翻折,得到抛物线c2,如图所示.

(1)请直接写出抛物线c2的表达式;
(2)现将抛物线c1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x轴的交点从左到右依次为AB;将抛物线c2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为DE
①当BD是线段AE的三等分点时,求m的值;
②在平移过程中,是否存在以点ANEM为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,已知抛物线ya(x-1)2(a≠0)经过点A(-2,0),抛物线的顶点为D,过O作射线OMAD.过顶点D平行于轴的直线交射线OM于点CB轴正半轴上,连结BC

(1)求该抛物线的解析式;
(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为ts).问:当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?
(3)若OCOB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OCBO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为ts),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.
题型:不详难度:| 查看答案
已知二次函数时的函数值相等。
(1)求二次函数的解析式;
(2)若一次函数的图象与二次函数的图象都经过点A,求m和k的值;
(3)设二次函数的图象与x轴交于点B,C(点B在点C的左侧),将二次函数的图象在点B,C间的部分(含点B和点C)向左平移个单位后得到的图象记为C,同时将(2)中得到的直线向上平移n个单位。请结合图象回答:当平移后的直线与图象G有公共点时,n的取值范围。
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.