当前位置:初中试题 > 数学试题 > 二次函数定义 > 如图,二次函数的图象开口向上,图象经过点(-1,2)和(1,0),且与轴交于负半轴.给出四个结论:①abc<0;②2a+>0;③a+c=1; ④a>1.其中正确...
题目
题型:不详难度:来源:
如图,二次函数的图象开口向上,图象经过点(-1,2)和(1,0),且与轴交于负半轴.给出四个结论:①abc<0;②2a+>0;③a+c=1; ④a>1.其中正确结论的序号是           (将你认为正确结论的序号都填上) .

答案
②,③,④
解析

试题分析:如图,二次函数的图象开口向上,图象经过点(-1,2)和(1,0),且与轴交于负半轴,令x=0,得y=〈0,观察图形二次函数的开口方向向上,所以a〉0,其对称轴为于y轴的右边,所以>0,所以b<0,所以abc>0,所以①错误;二次函数的图象开口向上,图象经过点(-1,2)和(1,0),所以a-b+c=2,a+b+c=0,两式子相加得2a+2c=2,所以a+c=1,因此③正确;a-b+c=2,a+b+c=0,两式子相减得b=-1;由图象可观察出0<<1,又因为b=-1,所以,解得a>1,所以④正确;因为c<0, a+b+c=0,所以a+b>0,又因为a>0,所以2a+>0,因此②正确,所以正确结论的序号有②,③,④
点评:本题考查抛物线,解答本题需要考生掌握抛物线的性质,比如求其顶点坐标,对称轴,与坐标轴的交点,开口方向,二次函数是中考的重点
核心考点
试题【如图,二次函数的图象开口向上,图象经过点(-1,2)和(1,0),且与轴交于负半轴.给出四个结论:①abc<0;②2a+>0;③a+c=1; ④a>1.其中正确】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
已知二次函数的图象经过点(-2,-5)、(1,4).
(1)求这个二次函数的解析式;
(2)不用列表,在下图中画出函数图象,观察图象写出y > 0时,x的取值范围.

题型:不详难度:| 查看答案
某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=-2x+240.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:
(1)求y与x的关系式;
(2)当x取何值时,y的值最大?
(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?
题型:不详难度:| 查看答案
已知.在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=,若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内,将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.

(1)求经过点O,C,A三点的抛物线的解析式.
(2)求抛物线的对称轴与线段OB交点D的坐标.
(3)线段OB与抛物线交与点E,点P为线段OE上一动点(点P不与点O,点E重合),过P点作y轴的平行线,交抛物线于点M,问:在线段OE上是否存在这样的点P,使得PD=CM?若存在,请求出此时点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
某公司在固定线路上运输,拟用运营指数Q量化考核司机的工作业绩.Q =" W" + 100,而W的大小与运输次数n及平均速度x(km/h)有关(不考虑其他因素),W由两部分的和组成:一部分与x的平方成正比,另一部分与x的n倍成正比.试行中得到了表中的数据.
次数n
2
1
速度x
40
60
指数Q
420
100
(1)用含x和n的式子表示Q;
(2)当x = 70,Q = 450时,求n的值;
(3)若n = 3,要使Q最大,确定x的值;
(4)设n = 2,x = 40,能否在n增加m%(m>0)同时x减少m%的情况下,而Q的值仍为420,若能,求出m的值;若不能,请说明理由.
参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是 
题型:不详难度:| 查看答案
如图,已知二次函数的图象过点A(0,﹣3),B(),对称轴为直线,点P是抛物线上的一动点,过点P分别作PM⊥x轴于点M,PN⊥y轴于点N,在四边形PMON上分别截取PC=MP,MD=OM,OE=ON,NF=NP.

(1)求此二次函数的解析式;
(2)求证:以C、D、E、F为顶点的四边形CDEF是平行四边形;
(3)在抛物线上是否存在这样的点P,使四边形CDEF为矩形?若存在,请求出所有符合条件的P点坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.