当前位置:初中试题 > 数学试题 > 二次函数定义 > 二次函数的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是【   】A.1个B.2个C.3个D.4个...
题目
题型:不详难度:来源:
二次函数的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是【   】
A.1个B.2个C.3个D.4个

答案
C。
解析
如图,①抛物线开口方向向下,则a<0.故①正确;
②∵对称轴,∴>0,即b>0.故②错误;
③∵抛物线与y轴交于正半轴,∴c>0.故③正确;
④∵对称轴,∴b+2a=0.故④正确;
⑤根据图示知,当x=1时,y>0,即a+b+c>0.故⑤错误。
综上所述,正确的说法是①③④,共有3个。故选C。
核心考点
试题【二次函数的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是【   】A.1个B.2个C.3个D.4个】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
如图,已知以E(3,0)为圆心,以5为半径的⊙E与x轴交于A,B两点,与y轴交于C点,抛物线经过A,B,C三点,顶点为F.

(1)求A,B,C三点的坐标;
(2)求抛物线的解析式及顶点F的坐标;
(3)已知M为抛物线上一动点(不与C点重合),试探究:
①使得以A,B,M为顶点的三角形面积与△ABC的面积相等,求所有符合条件的点M的坐标;
②若探究①中的M点位于第四象限,连接M点与抛物线顶点F,试判断直线MF与⊙E的位置关系,并说明理由.
题型:不详难度:| 查看答案
已知二次函数,当自变量x取m对应的函数值大于0,设自变量分别取m-3,m+3 时对应的函数值为y1,y2,则
A.y1>0,y2>0B.y1>0,y2<0 C.y1<0,y2>0D.y1<0,y2<0

题型:不详难度:| 查看答案
已知:抛物线C1:y=x2。如图(1),平移抛物线C1得到抛物线C2,C2经过C1的顶点O和A(2,0),C2的对称轴分别交C1、C2于点B、D。

(1)求抛物线C2的解析式;
(2)探究四边形ODAB的形状并证明你的结论;
(3)如图(2),将抛物线C2向下平移m个单位(m>0)得抛物线C3,C3的顶点为G,与y轴交于M。点N是M关于x轴的对称点,点P()在直线MG上。问:当m为何值时,在抛物线C3上存在点Q,使得以M、N、P、Q为顶点的四边形为平行四边形?
题型:不详难度:| 查看答案
如图,已知抛物线y=ax2+bx﹣4经过A(﹣8,0),B(2,0)两点,直线x=﹣4交x轴于点C,交抛物线于点D.

(1)求该抛物线的解析式;
(2)点P在抛物线上,点E在直线x=﹣4上,若以A,O,E,P为顶点的四边形是平行四边形,求点P的坐标;
(3)若B,D,C三点到同一条直线的距离分别是d1,d2,d3,问是否存在直线l,使?若存在,请直接写出d3的值;若不存在,请说明理由.
题型:不详难度:| 查看答案
二次函数y=﹣x2+bx+c的图象如图所示:若点A(x1,y1),B(x2,y2)在此函数图象上,x1<x2<1,y1与y2的大小关系是
A.y1≤y2B.y1<y2C.y1≥y2D.y1>y2

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.