当前位置:初中试题 > 数学试题 > 二次函数定义 > 如图①,已知抛物线经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点...
题目
题型:不详难度:来源:
如图①,已知抛物线经过点A(0,3),B(3,0),C(4,3).

(1)求抛物线的函数表达式;
(2)求抛物线的顶点坐标和对称轴;
(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).
答案
解:(1)∵抛物线经过点A(0,3),B(3,0),C(4,3),
,解得
∴抛物线的函数表达式为
(2)∵
∴抛物线的顶点坐标为(2,﹣1),对称轴为直线x=2。
(3)如图,∵抛物线的顶点坐标为(2,﹣1),∴PP′=1。

又由平移的性质知,阴影部分的面积等于平行四边形A′APP′的面积,
而平行四边形A′APP′的面积=1×2=2。
∴阴影部分的面积=2。
解析

试题分析:(1)把点A、B、C代入抛物线解析式利用待定系数法求解即可。
(2)把抛物线解析式整理成顶点式形式,然后写出顶点坐标与对称轴即可。
(3)根据顶点坐标求出向上平移的距离,再根据阴影部分的面积等于平行四边形的面积,列式进行计算即可得解。
核心考点
试题【如图①,已知抛物线经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
已知二次函数.

(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;
(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;
(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由。
题型:不详难度:| 查看答案
如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(﹣1,﹣1﹣m).

(1)求抛物线l的解析式(用含m的式子表示);
(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;
(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.
题型:不详难度:| 查看答案
二次函数的图象如图所示,则m的值是
A.-8B.8C.±8D.6

题型:不详难度:| 查看答案
已知抛物线C1的顶点为P(1,0),且过点(0,).将抛物线C1向下平移h个单位(h>0)得到抛物线C2.一条平行于x轴的直线与两条抛物线交于A、B、C、D四点(如图),且点A、C关于y轴对称,直线AB与x轴的距离是m2(m>0).

(1)求抛物线C1的解析式的一般形式;
(2)当m=2时,求h的值;
(3)若抛物线C1的对称轴与直线AB交于点E,与抛物线C2交于点F.求证:tan∠EDF﹣tan∠ECP=
题型:不详难度:| 查看答案
如图,已知抛物线(b,c是常数,且c<0)与x轴分别交于点A,B(点A位于点B的左侧),与y轴的负半轴交于点C,点A的坐标为(-1,0).

(1)b=    ,点B的横坐标为    (上述结果均用含c的代数式表示);
(2)连接BC,过点A作直线AE∥BC,与抛物线交于点E.点D是x轴上一点,其坐标为
(2,0),当C,D,E三点在同一直线上时,求抛物线的解析式;
(3)在(2)的条件下,点P是x轴下方的抛物线上的一动点,连接PB,PC,设所得△PBC的面积为S.
①求S的取值范围;
②若△PBC的面积S为整数,则这样的△PBC共有    个.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.