当前位置:初中试题 > 数学试题 > 二次函数定义 > 在平面直角坐标系xOy中,二次函数y=-x2+(m-1)x+4m的图象与x轴负半轴交于点A,与y轴交于点B(0,4),已知点E(0,1).(1)求m的值及点A的...
题目
题型:不详难度:来源:
在平面直角坐标系xOy中,二次函数y=-x2+(m-1)x+4m的图象与x轴负半轴交于点A,与y轴交于点B(0,4),已知点E(0,1).

(1)求m的值及点A的坐标;
(2)如图,将△AEO沿x轴向右平移得到△A′E′O′,连结A′B、BE′.
①当点E′落在该二次函数的图象上时,求AA′的长;
②设AA′=n,其中0<n<2,试用含n的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;
③当A′B+BE′取得最小值时,求点E′的坐标.
答案
(1)m="1,A(-2,0);" (2)①,②点E′的坐标是(1,1),③点E′的坐标是(,1).
解析

试题分析:(1)将点代入解析式即可求出m的值,这样写出函数解析式,求出A点坐标;
(2)①将E点的坐标代入二次函数解析式,即可求出AA′;②连接EE′,构造直角三角形,利用勾股定理即可求出A′B2+BE′当n=1时,其最小时,即可求出E′的坐标;③过点A作AB′⊥x轴,并使AB′ =" BE" = 3.易证△AB′A′≌△EBE′,当点B,A′,B′在同一条直线上时,A′B + B′A′最小,即此时A′B+BE′取得最小值.易证△AB′A′∽△OBA′,由相似就可求出E′的坐标
试题解析:
解:(1)由题意可知4m=4,m=1.
∴二次函数的解析式为
∴点A的坐标为(-2,0).
(2)①∵点E(0,1),由题意可知,

解得
∴AA′=
②如图,连接EE′.

由题设知AA′=n(0<n<2),则A′O=2-n.
在Rt△A′BO中,由A′B2=A′O2+BO2
得A′B2=(2–n)2+42=n2-4n+20.
∵△A′E′O′是△AEO沿x轴向右平移得到的,
∴EE′∥AA′,且EE′=AA′.
∴∠BEE′=90°,EE′=n.
又BE=OB-OE=3.
∴在Rt△BE′E中,BE′2=E′E2+BE2=n2+9,
∴A′B2+BE′2=2n2-4n+29=2(n–1)2+27.
当n=1时,A′B2+BE′2可以取得最小值,此时点E′的坐标是(1,1).
③如图,过点A作AB′⊥x轴,并使AB′=BE=3.
易证△AB′A′≌△EBE′,
∴B′A′=BE′,
∴A′B+BE′=A′B+B′A′.
当点B,A′,B′在同一条直线上时,A′B+B′A′最小,即此时A′B+BE′取得最小值.
易证△AB′A′∽△OBA′,

∴AA′=
∴EE′=AA′=
∴点E′的坐标是(,1).
核心考点
试题【在平面直角坐标系xOy中,二次函数y=-x2+(m-1)x+4m的图象与x轴负半轴交于点A,与y轴交于点B(0,4),已知点E(0,1).(1)求m的值及点A的】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
如图,在平面直角坐标系中,抛物线经过平移得到抛物线,其对称轴与两段抛物线所围成的阴影部分的面积是(      )
A.2B.4C.8D.16

题型:不详难度:| 查看答案
已知二次函数y=x2+2x-1.
(1)写出它的顶点坐标;
(2)当x取何值时,y随x的增大而增大;
(3)求出图象与轴的交点坐标.
题型:不详难度:| 查看答案
如图(1)是某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m的景观灯.现把拱桥的截面图放在平面直角坐标系中,如图(2).

求(1)抛物线的解析式;
(2)两盏景观灯P1、P2之间的水平距离.
题型:不详难度:| 查看答案
已知直线y=kx-3与x轴交于点A(4,0),与y轴交于点C,抛物线经过点A和点C,动点P在x轴上以每秒1个长度单位的速度由抛物线与x轴的另一个交点B向点A运动,点Q由点C沿线段CA向点A运动且速度是点P运动速度的2倍.

(1)求此抛物线的解析式和直线的解析式;
(2)如果点P和点Q同时出发,运动时间为t(秒),试问当t为何值时,以A、P、Q为顶点的三角形与△AOC相似;
(3)在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大.若存在,求出点D的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
将抛物线y=3x2向左平移2个单位后得到的抛物线的解析式为(  )
A.y=3(x+2)2B.y=3(x-2)2 C.y=3x2+2D.y=3x2-2

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.