当前位置:初中试题 > 数学试题 > 二次函数定义 > 已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:x…-10  1234…y…830-103…(1)求该二次函数的解析式;(2)当x为何值时...
题目
题型:不详难度:来源:
已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:
x

-1
0
  1
2
3
4

y

8
3
0
-1
0
3

(1)求该二次函数的解析式;
(2)当x为何值时,y有最小值,最小值是多少?
(3)若A(m,y1),B(m+2,y2)两点都在该函数的图象上,计算当m 取何值时,
答案
(1)y=x2-4x+3;(2)当x=2时,ymin=-1;(3)m<1.
解析

试题分析:(1)由表格得到二次函数与x轴的两交点坐标,设出二次函数的两根式方程,将(0,3)代入求出a的值,即可确定出二次函数解析式;
(2)将(1)得出的函数解析式配方后,根据完全平方式大于等于0,即可求出y的最小值,以及此时x的值;
(3)将A点坐标代入二次函数解析式中表示出y1,B坐标代入表示出y2,由y1>y2列出关于m的不等式,求出不等式的解集即可得到m的范围.
试题解析:(1)由表格得:二次函数与x轴的两交点分别为(1,0),(3,0),
设二次函数解析式为y=a(x-1)(x-3),
将x=0,y=3代入得:3=3a,即a=1,
则二次函数解析式为y=(x-1)(x-3)=x2-4x+3.
(2)由(1)y=x2-4x+3=(x-2)2-1,
则当x=2时,ymin=-1.
将A坐标代入二次函数解析式得:y1=m2-4m+3;
B坐标代入二次函数解析式得:y2=(m+2)2-4(m+2)+3=m2-1,
若y1>y2,则m2-4m+3>m2-1,
解得:m<1.
核心考点
试题【已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:x…-10  1234…y…830-103…(1)求该二次函数的解析式;(2)当x为何值时】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
在平面直角坐标系xOy中,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(0,4),D为OC的中点.

(1)求m的值;
(2)抛物线的对称轴与 x轴交于点E,在直线AD上是否存在点F,使得以点A、B、F为顶点的三角形与△ADE 相似?若存在,请求出点F的坐标,若不存在,请说明理由;
(3)在抛物线的对称轴上是否存在点G,使△GBC中BC边上的高为?若存在,求出点G的坐标;若不存在请说明理由.
题型:不详难度:| 查看答案
若二次函数的图象经过点P(2,8),则该图象必经过点
A.(2,-8)B.(-2,8)C.(8,-2)D.(-8,2)

题型:不详难度:| 查看答案
两个正方形的周长和是10,如果其中一个正方形的边长为,则这两个正方形的面积的和S关于的函数关系式为
A.B.
C.D.

题型:不详难度:| 查看答案
抛物线上部分点的横坐标,纵坐标的对应值如下表:




0
1
2



0
4
6
6
4

从上表可知,下列说法正确的是     
①抛物线与轴的一个交点为; ②抛物线与轴的交点为
③抛物线的对称轴是:直线;   ④在对称轴左侧增大而增大.
题型:不详难度:| 查看答案
如图,抛物线与x轴交于A(1,0)、B(-4,0)两点,交y轴与C点.

(1)求该抛物线的解析式.
(2)在该抛物线位于第二象限的部分上是否存在点D,使得△DBC的面积S最大?若存在,求出点D的坐标;若不存在,请说明理由.
(3)设抛物线的顶点为点F,连接线段CF,连接直线BC,请问能否在直线BC上找到一个点M,在抛物线上找到一个点N,使得C、F、M、N四点组成的四边形为平行四边形,若存在,请写出点M和点N的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.