当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 已知、为椭圆的左、右焦点,且点在椭圆上.(1)求椭圆的方程;(2)过的直线交椭圆于两点,则的内切圆的面积是否存在最大值?若存在其最大值及此时的直线方程;若不存在...
题目
题型:不详难度:来源:
已知为椭圆的左、右焦点,且点在椭圆上.
(1)求椭圆的方程;
(2)过的直线交椭圆两点,则的内切圆的面积是否存在最大值?
若存在其最大值及此时的直线方程;若不存在,请说明理由.
答案
(1);(2)当不存在时圆面积最大, ,此时直线方程为.
解析

试题分析:本题考查椭圆的标准方程和几何性质、直线的方程、平面内两点间的距离公式、三角形面积公式等基础知识,考查用代数方法研究圆锥曲线的性质以及数形结合的数学思想方法,考查运算求解能力、综合分析和解决问题的能力.第一问,先设出椭圆的标准方程,利用椭圆的定义列出,解出的值,从而得到椭圆的标准方程;第二问,假设直线的斜率存在,设出直线方程与椭圆方程联立,消参得出关于的方程,得到两根之和、两根之积,求出的面积,面积之和内切圆的半径有关,所以当的面积最大时,内切圆面积最大,换一种形式求的面积,利用换元法和配方法求出面积的最大值,而直线的斜率不存在时,易求出和圆面积,经过比较,当不存在时圆面积最大.
试题解析:(Ⅰ)由已知,可设椭圆的方程为
因为,所以
所以,椭圆的方程为
(也可用待定系数法,或用)      4分
(2)当直线斜率存在时,设直线,由
     6分
所以
设内切圆半径为,因为的周长为(定值),,所以当的面积最大时,内切圆面积最大,又,    8分
,则,所以    10分
又当不存在时,,此时
故当不存在时圆面积最大, ,此时直线方程为.      12分
核心考点
试题【已知、为椭圆的左、右焦点,且点在椭圆上.(1)求椭圆的方程;(2)过的直线交椭圆于两点,则的内切圆的面积是否存在最大值?若存在其最大值及此时的直线方程;若不存在】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
是以原点为中心,焦点在轴上的等轴双曲线在第一象限部分,曲线在点P处的切线分别交该双曲线的两条渐近线于两点,则(   )
A.B.
C.D.

题型:不详难度:| 查看答案
已知抛物线,直线与E交于A、B两点,且,其中O为原点.
(1)求抛物线E的方程;
(2)点C坐标为,记直线CA、CB的斜率分别为,证明:为定值.
题型:不详难度:| 查看答案
已知点,动点G满足
(Ⅰ)求动点G的轨迹的方程;
(Ⅱ)已知过点且与轴不垂直的直线l交(Ⅰ)中的轨迹于P,Q两点.在线段上是否存在点,使得以MP,MQ为邻边的平行四边形是菱形?若存在,求实数m的取值范围;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知点,直线AG,BG相交于点G,且它们的斜率之积是
(Ⅰ)求点G的轨迹的方程;
(Ⅱ)圆上有一个动点P,且P在x轴的上方,点,直线PA交(Ⅰ)中的轨迹于D,连接PB,CD.设直线PB,CD的斜率存在且分别为,若,求实数的取值范围.
题型:不详难度:| 查看答案
已知双曲线的左右焦点分别为为双曲线的中心,是双曲线右支上的点,的内切圆的圆心为,且圆轴相切于点,过作直线的垂线,垂足为,若为双曲线的离心率,则(   )
A.B.
C.D.关系不确定

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.