当前位置:初中试题 > 数学试题 > 二次函数定义 > 如图,抛物线y=x²+bx+c与直线y=x-1交于A、B两点.点A的横坐标为-3,点B在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于...
题目
题型:不详难度:来源:
如图,抛物线y=x²+bx+c与直线y=x-1交于A、B两点.点A的横坐标为-3,点B在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB于D.
(1)求抛物线的解析式;
(2)当m为何值时,
(3)是否存在点P,使△PAD是直角三角形,若存在,求出点P的坐标;若不存在,说明理由.

答案
(1)y=x2+4x-1;(2)∴m=,-2,或-3时S四边形OBDC=2SS△BPD
解析

试题分析:(1)由x=0时带入y=x-1求出y的值求出B的坐标,当x=-3时,代入y=x-1求出y的值就可以求出A的坐标,由待定系数法就可以求出抛物线的解析式;
(2)连结OP,由P点的横坐标为m可以表示出P、D的坐标,可以表示出S四边形OBDC和2SBPD建立方程求出其解即可.

(3)如图2,当∠APD=90°时,设出P点的坐标,就可以表示出D的坐标,由△APD∽△FCD就可与求出结论,如图3,当∠PAD=90°时,作AE⊥x轴于E,就有,可以表示出AD,再由△PAD∽△FEA由相似三角形的性质就可以求出结论.
试题解析:
∵y=x-1,∴x=0时,y=-1,∴B(0,-1).
当x=-3时,y=-4,∴A(-3,-4).
∵y=x2+bx+c与直线y=x-1交于A、B两点,∴
∴抛物线的解析式为:y=x2+4x-1;
(2)∵P点横坐标是m(m<0),∴P(m,m2+4m-1),D(m,m-1)
如图1①,作BE⊥PC于E,  ∴BE=-m.
CD=1-m,OB=1,OC=-m,CP=1-4m-m2
∴PD=1-4m-m2-1+m=-3m-m2

解得:m1=0(舍去),m2=-2,m3=
如图1②,作BE⊥PC于E,
∴BE=-m.
PD=1-4m-m2+1-m=2-4m-m2

解得:m=0(舍去)或m=-3,
∴m=,-2,或-3时S四边形OBDC=2SBPD
)如图2,当∠APD=90°时,设P(a,a2+4a-1),则D(a,a-1),
∴AP=m+4,CD=1-m,OC=-m,CP=1-4m-m2
∴DP=1-4m-m2-1+m=-3m-m2
在y=x-1中,当y=0时,x=1,
∴(1,0),
∴OF=1,∴CF=1-m.AF=4
∵PC⊥x轴,
∴∠PCF=90°,
∴∠PCF=∠APD,
∴CF∥AP,
∴△APD∽△FCD,
 ∴
解得:m=1舍去或m=-2,∴P(-2,-5)
如图3,当∠PAD=90°时,作AE⊥x轴于E,
∴∠AEF=90°.CE=-3-m,EF=4,AF=4
PD=1-m-(1-4m-m2)=3m+m2
∵PC⊥x轴,∵PC⊥x轴,
∴∠DCF=90°,
∴∠DCF=∠AEF,
∴AE∥CD.

∴AD=(-3-m)
∵△PAD∽△FEA,


∴m=-2或m=-3
∴P(-2,-5)或(-3,-4)与点A重合,舍去,
∴P(-2,-5).
核心考点
试题【如图,抛物线y=x²+bx+c与直线y=x-1交于A、B两点.点A的横坐标为-3,点B在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
设抛物线过A(0,2),B(4,3),C三点,其中点C在直线上,且点C到抛物线对称轴的距离等于1,则抛物线的函数解析式为       .
题型:不详难度:| 查看答案
复习课中,教师给出关于x的函数(k是实数).
教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.
学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选择如下四条:
①存在函数,其图像经过(1,0)点;
②函数图像与坐标轴总有三个不同的交点;
③当时,不是y随x的增大而增大就是y随x的增大而减小;
④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数;
教师:请你分别判断四条结论的真假,并给出理由,最后简单写出解决问题时所用的数学方法.
题型:不详难度:| 查看答案
当-2≤x≤l时,二次函数有最大值4,则实数m的值为(  )
(A)     (B)   (c)2或  (D)2或
题型:不详难度:| 查看答案
实验数据显示,一般成人喝半斤低度白酒后,1.5时内其血液中酒精含量y(毫克/百毫升)与时间(时)的关系可近似地用二次函数刻画;1.5时后(包括1.5时)y与x可近似地用反比例函数(k>0)刻画(如图所示).
(1)根据上述数学模型计算:
①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?
②当=5时,y=45.求k的值.
(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.

题型:不详难度:| 查看答案
如图,在平面直角坐标系中,A是抛物线上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B坐标为(O,2),直线AB交轴于点C,点D与点C关于y轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为m,△BED的面积为S.
(1)当时,求S的值.
(2)求S关于的函数解析式.
(3)①若S=时,求的值;
②当m>2时,设,猜想k与m的数量关系并证明.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.