当前位置:初中试题 > 数学试题 > 二次函数定义 > 如图,在平面直角坐标系中,A是抛物线上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B坐标为(O,2),直线AB交轴于点C,点D与点C关于y轴对称,直线D...
题目
题型:不详难度:来源:
如图,在平面直角坐标系中,A是抛物线上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B坐标为(O,2),直线AB交轴于点C,点D与点C关于y轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为m,△BED的面积为S.
(1)当时,求S的值.
(2)求S关于的函数解析式.
(3)①若S=时,求的值;
②当m>2时,设,猜想k与m的数量关系并证明.

答案
(1);(2);(3)①;②,证明见解析.
解析

试题分析:(1)根据点在曲线上点的坐标与方程的关系,求出点A的坐标,根据△ABE∽△CBO求出CO的长,从而根据轴对称的性质求出DO的长,进而求出△BED的面积S.
(2)分两种情况讨论.
(3)①连接AD,由△BED的面积为求出现,得到点A 的坐标,应用待定系数法,设
得到,从而.
②连接AD,应用待定系数法,设得到,从而得到,因此.
得到,从而
试题解析:(1)∵点A是抛物线上的一个动点,AE⊥y轴于点E,且
∴点A的坐标为. ∴当时,点A的坐标为.
∵点B的坐标为,∴BE=OE=1.
∵AE⊥y轴,∴AE∥x轴. ∴△ABE∽△CBO.∴,即,解得.
∵点D与点C关于y轴对称,∴.
.
(2)①当时,如图,
∵点D与点C关于y轴对称,∴△DBO≌△CBO.
∵△ABE∽△CBO,∴△ABE∽△DBO .∴.∴
.

②当时,如图,同①可得

综上所述,S关于的函数解析式.
(3)①如图,连接AD,
∵△BED的面积为,∴.∴点A 的坐标为.
,∴.
.
.

②k与m的数量关系为,证明如下:
连接AD,则
,∴.
.
∵点A 的坐标为,∴.

核心考点
试题【如图,在平面直角坐标系中,A是抛物线上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B坐标为(O,2),直线AB交轴于点C,点D与点C关于y轴对称,直线D】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
如图,抛物线的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.
(1)求A、B、C的坐标;
(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;
(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=DQ,求点F的坐标.

题型:不详难度:| 查看答案
如图所示,已知二次函数经过、C三点,点是抛物线与直线的一个交点.
(1)求二次函数关系式和点C的坐标;
(2)对于动点,求的最大值;
(3)若动点M在直线上方的抛物线运动,过点M做x轴的垂线交x轴于点F,如果直线AP把线段MF分成1:2的两部分,求点M的坐标。

题型:不详难度:| 查看答案
如图1,在等腰△ABC中,底边BC=8,高AD=2,一动点Q从B点出发,以每秒1个单位的速度沿BC向右运动,到达D点停止;另一动点P从距离B点1个单位的位置出发,以相同的速度沿BC向右运动,到达DC中点停止;已知P、Q同时出发,以PQ为边作正方形PQMN,使正方形PQMN和△ABC在BC的同侧,设运动的时间为t秒(t≥0).
(1)当点N落在AB边上时,t的值为   ,当点N落在AC边上时,t的值为   
(2)设正方形PQMN与△ABC重叠部分面积为S,求出当重叠部分为五边形时S与t的函数关系式以及t的取值范围;
(3)(本小题选做题,做对得5分,但全卷不超过150分)
如图2,分别取AB、AC的中点E、F,连接ED、FD,当点P、Q开始运动时,点G从BE中点出发,以每秒 个单位的速度沿折线BE-ED-DF向F点运动,到达F点停止运动.请问在点P的整个运动过程中,点G可能与PN边的中点重合吗?如果可能,请直接写出t的值或取值范围;若不可能,请说明理由.

题型:不详难度:| 查看答案
已知关于x的二次函数y=x2-2x+c的图像上有两点A(x1,y1),B(x2,y2),若x1<1<x2且x1+x2=2,则y1与y2的大小关系是
A.y1<y2B.y1>y2C.y1=y2D.不能确定

题型:不详难度:| 查看答案
如图①,已知二次函数的解析式是y=ax2+bx(a>0),顶点为A(1,-1).
(1)a=   
(2)若点P在对称轴右侧的二次函数图像上运动,连结OP,交对称轴于点B,点B关于顶点A的对称点为C,连接PC、OC,求证:∠PCB=∠OCB;
(3)如图②,将抛物线沿直线y=-x作n次平移(n为正整数,n≤12),顶点分别为A1,A2,…,An,横坐标依次为1,2,…,n,各抛物线的对称轴与x轴的交点分别为D1,D2,…,Dn,以线段AnDn为边向右作正方形AnDnEnFn,是否存在点Fn恰好落在其中的一个抛物线上,若存在,求出所有满足条件的正方形边长;若不存在,请说明理由.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.