当前位置:初中试题 > 数学试题 > 反比例函数定义 > 九年级数学兴趣小组组织了以“等积变形”为主题的课题研究.第一学习小组发现:如图(1),点A、点B在直线l1上,点C、点D在直线l2上,若l1∥l2,则S△ABC...
题目
题型:不详难度:来源:
九年级数学兴趣小组组织了以“等积变形”为主题的课题研究.
第一学习小组发现:如图(1),点A、点B在直线l1上,点C、点D在直线l2上,若l1∥l2,则SABC=SABD;反之亦成立.
第二学习小组发现:如图(2),点P是反比例函数上任意一点,过点P作x轴、y轴的垂线,垂足为M、N,则矩形OMPN的面积为定值|k|.

请利用上述结论解决下列问题:
(1)如图(3),四边形ABCD、与四边形CEFG都是正方形点E在CD上,正方形ABCD边长为2,则SBDF= 2 
(2)如图(4),点P、Q在反比例函数图象上,PQ过点O,过P作y轴的平行线交x轴于点H,过Q作x轴的平行线交PH于点G,若SPQG=8,则SPOH= 2 ,k= ﹣4 
(3)如图(5)点P、Q是第一象限的点,且在反比例函数图象上,过点P作x轴垂线,过点Q作y轴垂线,垂足分别是M、N,试判断直线PQ与直线MN的位置关系,并说明理由.
答案
(1)2,(2)2,﹣4.(3)平行,理由见解析
解析

试题分析:(1)连接CF,根据正方形的性质可知,CF∥BD,△CBD与△FBD同底等高,故SBDF=SBDC,可求解;
(2)设P(x,y),则k=xy,根据P点所在象限及P、Q关于原点中心对称,得GQ=﹣2x,PG=2y,由已知,得SPQG=×GQ×PG=8,可求SPOH及k的值;
(3)作PA⊥y轴,QB⊥x轴,垂足为A,B,连接PN,MQ,根据双曲线的性质可知,S矩形AOMP=S矩形BONQ=k,可得S矩形ANCP=S矩形BMCQ,则有SNCP=SMCQ,SNPQ=SMPQ,可证PQ∥MN.
解:(1)连接CF,
∵四边形ABCD与四边形CEFG都是正方形,
∴CF∥BD,△CBD与△FBD同底等高,
∴SBDF=SBDC=S正方形ABCD=2;

(2)设P(x,y),则k=xy,
根据题意,得GQ=﹣2x,PG=2y,
∴SPQG=×GQ×PG=8,即•(﹣2x)•2y=8,
解得xy=﹣4,即k=﹣4,
SPOH=×OH×PH=﹣xy=2;
(3)PQ∥MN.
理由:作PA⊥y轴,QB⊥x轴,垂足为A,B,连接PN,MQ,
根据双曲线的性质可知,S矩形AOMP=S矩形BONQ=k,
∴S矩形ANCP=S矩形BMCQ,可知SNCP=SMCQ
∴SNPQ=SMPQ
∴PQ∥MN.
故本题答案为:(1)2,(2)2,﹣4.
点评:本题通过反比例函数的知识,考查学生的猜想探究能力.解题时先直观地猜想,再按照从特殊到一般的方法去验证.
核心考点
试题【九年级数学兴趣小组组织了以“等积变形”为主题的课题研究.第一学习小组发现:如图(1),点A、点B在直线l1上,点C、点D在直线l2上,若l1∥l2,则S△ABC】;主要考察你对反比例函数定义等知识点的理解。[详细]
举一反三
如图,将一块直角三角形纸板的直角顶点放在C(1,)处,两直角边分别与x,y轴平行,纸板的另两个顶点A,B恰好是直线y=kx+与双曲线y=(m>0)的交点.

(1)求m和k的值;
(2)设双曲线y=(m>0)在A,B之间的部分为L,让一把三角尺的直角顶点P在L上滑动,两直角边始终与坐标轴平行,且与线段AB交于M,N两点,请探究是否存在点P使得MN=AB,写出你的探究过程和结论.
题型:不详难度:| 查看答案
如图,P1(x1,y1),P2(x2,y2),…Pn(xn,yn)在函数y=(x>0)的图象上,△P1OA1,△P2A1A2,△P3A2A3,…△PnAn﹣1An都是等腰直角三角形,斜边OA1、A1A2、A2A3,…An﹣1An都在x轴上
(1)求P1的坐标;
(2)求y1+y2+y3+…y10的值.
题型:不详难度:| 查看答案
如图,奥运圣火抵达某市奥林匹克广场后,沿图中直角坐标系中的一段反比例函数图象传递.动点T(m,n)表示火炬位置,火炬从离北京路10米处的M点开始传递,到离北京路1000米的N点时传递活动结束.迎圣火临时指挥部设在坐标原点O(北京路与奥运路的十字路口),OATB为少先队员鲜花方阵,方阵始终保持矩形形状且面积恒为10000平方米(路线宽度均不计).

(1)求图中反比例函数的关系式(不需写出自变量的取值范围);
(2)当鲜花方阵的周长为500米时,确定此时火炬的位置(用坐标表示);
(3)设t=m﹣n,用含t的代数式表示火炬到指挥部的距离;当火炬离指挥部最近时,确定此时火炬的位置(用坐标表示).
题型:不详难度:| 查看答案
已知反比例函数的图象,当x取1,2,3,…,n时,对应在反比例图象上的点分别为M1,M2,M3…,Mn,则=  
题型:不详难度:| 查看答案
如图,将一矩形OABC放在直角坐标系中,O为坐标原点.点A在y轴正半轴上.点E是边AB上的一个动点(不与点A、B重合),过点E的反比例函数的图象与边BC交于点F.

(1)若△OAE、△OCF的面积分别为S1、S2.且S1+S2=2,求k的值;
(2)若OA=2.0C=4.问当点E运动到什么位置时.四边形OAEF的面积最大.其最大值为多少?
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.