当前位置:初中试题 > 数学试题 > 待定系数法求一次函数解析式 > 我国西南五省发生旱情后,我市中小学学生得知遵义市某山区学校学生缺少饮用水,全市中小学生决定捐出自己的零花钱购买300吨矿泉水送往灾区学校.我市“为民”货车出租公...
题目
题型:不详难度:来源:
我国西南五省发生旱情后,我市中小学学生得知遵义市某山区学校学生缺少饮用水,全市中小学生决定捐出自己的零花钱购买300吨矿泉水送往灾区学校.我市“为民”货车出租公司听说此事后,决定免费将这批矿泉水送往灾区学校,已知每辆货车配备2名司机,整个车队配备1名领队,司机及领队往返途中的生活费y(单位:元)与货车台数x(单位:台)的关系如图①所示,为此“为民”货车出租公司花费8200元.又知“为民”出租车公司有小、中、大三种型号货车供出租,本次派出的货车每种型号货车不少于3台,各种型号货车载重量和预计运费如下表所示.
答案
核心考点
试题【我国西南五省发生旱情后,我市中小学学生得知遵义市某山区学校学生缺少饮用水,全市中小学生决定捐出自己的零花钱购买300吨矿泉水送往灾区学校.我市“为民”货车出租公】;主要考察你对待定系数法求一次函数解析式等知识点的理解。[详细]
举一反三
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
载重(吨/台)121520
运费(元/辆)100012001500
(1)设y=kx+b,将点(0,200)和点(8,3400)分别代入解析式中得





b=200
8k+b=3400

解得





k=400
b=200

故解析式为:y=400x+200
当y=8200时,400x+200=8200,解得x=20故公司派出了20台车.

(2)设中型货车有m台,大型货车有n台,则有:





p+m+n=20
12p+15m+20n=300

解得:





m=20-1.6p
n=0.6p

则W=1000p+1200m+1500n=1000p+1200(20-1.6p)+1500•0.6p=-20p+24000.

(3)由题知p≥3,m≥3,n≥3得





p≥3
20-1.6p≥3
0.6p≥3

解得3≤p≤10且p为正整数.
因为W随p的增大而减小,所以当p=10时,W最小且为23800元.
故小、中、大型货车分别为10,4,6台时总运费最小且为23800元.
“五一黄金周”的某一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩.该小汽车离家的距离s(千米)与时间t(时)的关系可以用图中的曲线表示.根据图象提供的有关信息,解答下列问题:
(1)小明全家在旅游景点游玩了多少小时?
(2)求出返程途中,s(千米)与时间t(时)的函数关系,并回答小明全家到家是什么时间?
(3)若出发时汽车油箱中存油15升,该汽车的油箱总容量为35升,汽车每行驶1千米耗油
1
9
升.请你就“何时加油和加油量”给小明全家提出一个合理化的建议.(加油所用时间忽略不计)
如图,在平面直角坐标系中,已知矩形OABC的两个顶点A、B的坐标分别A(-2


3
,0)、B(-2


3
,2),∠CAO=30°.
(1)求对角线AC所在的直线的函数表达式;
(2)把矩形OABC以AC所在的直线为对称轴翻折,点O落在平面上的点D处,求点D的坐标;
(3)在平面内是否存在点P,使得以A、O、D、P为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
(1)画直线y=-2x+7的图象;
(2)求这直线与x轴的交点坐标A,与y轴的交点坐标B;
(3)若O是原点,求△AOB的面积;
(4)利用图象求二元一次方程2x+y=7的正整数解.并把方程的解所对应的点在图象上表示出来.
A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.
(1)求y关于x的表达式;
(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;
(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.
如图,菱形OABC在平面直角坐标系中,点C的坐标为(3,4),点A在x轴的正半轴上,直线AC交y轴于点D.动点P从A出发,以每秒2个单位的速度沿折线A-B-C向点C匀速运动,同时点Q从点D出发,以每秒


5
个单位的速度沿DA向点A匀速运动;设点P、Q运动时间为t(秒)
(1)求点A的坐标;
(2)求△PCQ的面积S(S≠0)与运动时间t的函数关系式,并写出自变量的取值范围;
(3)过点P作PH⊥AD于H,试求点P在运动的过程中t为何值时,tan∠PQH=
1
4