当前位置:初中试题 > 数学试题 > 有理数的除法 > 求所有的正整数对(a,b),使得ab2+b+7整除a2b+a+b....
题目
题型:解答题难度:一般来源:不详
求所有的正整数对(a,b),使得ab2+b+7整除a2b+a+b.
答案
由条件ab2+b+7整除a2b+a+b,
显然ab2+b+7|a2b2+ab+b2
而a2b2+ab+b2=a(ab2+b+7)+b2-7a,故ab2+b+7|b2-7a,
下面分三种情况讨论;
情形一:b2-7a>0;这时b2-7a<b2<ab2+b+7,矛盾;
情形二:b2=7a,此时a,b应具有a=7k2,b=7k,k是正整数的形式,显然(a,b)=(7k2,7k)满足条件;
情形二:b2-7a<0,这时由7a-b2≥ab2+b+7,则b2<7,
进而b=1或2,当b=1时,则条件
a2+a+1
a+8
=a-7+
57
a+8
为正整数,
57能被a+8整除,可知a+8=19或57,进而知a=11或49,
解得(a,b)=(11,1)或(49,1);
当b=2时,由
7a-4
4a+9
(<2)为正整数,可知
7a-4
4a+9
=1,此时a=
13
3
,矛盾;
综上,所有解为(a,b)=(11,1),(49,1)或(7k2,7k)(k是正整数).
核心考点
试题【求所有的正整数对(a,b),使得ab2+b+7整除a2b+a+b.】;主要考察你对有理数的除法等知识点的理解。[详细]
举一反三
一个两位数被7除余1,如果交换它的十位数字与个位数字的位置,所得的两位数被7除也余1,则这样的两位数有(  )
A.2个B.3个C.4个D.5个
题型:单选题难度:简单| 查看答案
设a1,a2,…an,是n个任意给定的.求证:一定可以找到紧连在一起的若干个数,使得它们的和能被n整除.
题型:解答题难度:一般| 查看答案
已知724-1可被40至50之间的两个整数整除,这两个整数是(  )
A.41,48B.45,47C.43,48D.4l,47
题型:单选题难度:一般| 查看答案
求证:一个十进制数被9除的余数等于它的各位数字之和被9除的余数.
题型:解答题难度:一般| 查看答案
(1)求33除21998的余数.
(2)求8除72n+1-1的余数.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.