百科
曲线与方程的关系
曲线与方程的关系
在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:
(1)曲线上点的坐标都是这个方程的解;
(2)以这个方程的解为坐标的点都是曲线上的点。
那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线。
相关试题
已知点(x,y)在椭圆C:的第一象限上运动。
(1)求点的轨迹C′的方程;
(2)若把轨迹C′的方程表达式记为,且在内有最大值,试求椭圆C的离心率的取值范围。设F1、F2分别为椭圆C:(a>b>0)的左、右两个焦点。
(1)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;
(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值,试对双曲线写出具有类似特性的性质,并加以证明。已知动点P(x,y)与两定点M(-1,0),N(1,0)连线的斜率之积等于常数λ(λ≠0)。
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)试根据λ的取值情况讨论轨迹C的形状:
(Ⅲ)当λ=-2时,过定点F(0,1)的直线l与轨迹C交于A、B两点,求△AOB的面积的最大值。曲线C是平面内与两个定点F1(-1,0)和F2(1,0)的距离的积等于常数a2(a>1)的点的轨迹,
给出下列三个结论:①曲线C过坐标原点;②曲线C关于坐标原点对称;③若点P在曲线C上,则△F1PF2的面积大于a2;其中,所有正确结论的序号是( )。为了考察冰川的融化状况,一支科考队在某冰川上相距8km的A,B两点各建一个考察基地,视冰川面为平面形,以过A,B两点的直线为x轴,线段AB的垂直平分线为y轴建立平面直角坐标系(如图).在直线x=2的右侧,考察范围为到点B的距离不超过km的区域;在直线x=2的左侧,考察范围为到A,B两点的距离之和不超过4km的区域, (Ⅰ)求考察区域边界曲线的方程;
(Ⅱ)如图所示,设线段P1P2,P2P3是冰川的部分边界线(不考虑其他边界),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2km,以后每年移动的距离为前一年的2倍.求冰川边界线移动到考察区域所需的最短时间.如图,已知直线a∥平面α,在平面α内有一动点P,点A是定直线a上定点,且直线AP与a夹角为θ(θ为锐角),点A到平面α距离为d,则动点P的轨迹方程为 [ ] A.x2tan2θ+y2=d2
B.x2tan2θ-y2=d2
C.y2=2d(x-)
D.y2=-2d(x-)若圆x2+y2-ax+2y+1=0与圆x2+y2=1关于直线y=x-1对称,过点C(-a,a)的圆P与y轴相切,则圆心P的轨迹方程为( )。 动点P(x,y)到定点A(3,4)的距离比P到x轴的距离多一个单位长度,则动点P的轨迹方程为 [ ]
A.x2-6x-10y+24=0
B.x2-6x-6y+24=0
C.x2-6x-10y+24=0或x2-6x-6y=0
D.x2-8x-8y+24=0平面内与两定点A1(-a,0)、A2(a,0)(a>0)连线的斜率之积等于非零常数m的点的轨迹,加上A1、A2两点所成的曲线C可以是圆、椭圆或双曲线。
(1)求曲线C的方程,并讨论C的形状与m值的关系;
(2)当m=-1时,对应的曲线为C1:对给定的m∈(-1, 0)∪(0,+∞),对应的曲线为C2。设F1、F2是C2的两个焦点。试问:在C1上,是否存在点N,使得△F1NF2的面积S=|m|a2。若存在,求tanF1NF2的值;若不存在,请说明理由。如图,椭圆Q:(a>b>0)的右焦点F(c,0),过点F的一动直线m绕点F转动,并且交椭圆于A、B两点,P是线段AB的中点。 (1)求点P的轨迹H的方程;
(2)在Q的方程中,令a2=1+cosθ+sinθ,b2=sinθ(0<θ≤),确定θ的值,使原点距椭圆的右准线l最远,此时,设l与x轴交点为D,当直线m绕点F转动到什么位置时,三角形ABD的面积最大?如图,椭圆Q:(a>b>0)的右焦点为F(c,0),过点F的一动直线m绕点F转动,并且交椭圆于A,B两点,P为线段AB的中点。 (1)求点P的轨迹H的方程;
(2)若在Q的方程中,令a2=1+cosθ+sinθ,b2=sinθ(0<θ≤),设轨迹H的最高点和最低点分别为M和N,当θ为何值时,△MNF为一个正三角形?设点P(x0,y0)在直线x=m(y≠±m,0<m<1)上,过点P作双曲线x2-y2=1的两条切线PA、PB,切点为A、B,定点M(,0),
(1)求证:三点A、M、B共线;
(2)过点A作直线x-y=0的垂线,垂足为N,试求△AMN的重心G所在曲线方程。设0<θ<,曲线x2sinθ+y2cosθ=1和x2cosθ-y2sinθ=1 有4个不同的交点,
(Ⅰ)求θ的取值范围;
(Ⅱ)证明这4个交点共圆,并求圆半径的取值范围。已知常数a>0,向量c=(0,a),i=(1,0),经过原点O以c+λi为方向向量的直线与经过定点A(0,a)以i-2λc为方向向量的直线相交于点P,其中λ∈R,试问:是否存在两个定点E、F,使得|PE|+|PF|为定值。若存在,求出E、F的坐标;若不存在,说明理由。 已知常数a>0,向量c=(0,a),i=(1,0),经过原点O以c+λi为方向向量的直线与经过定点A(0,a)以i-2λc为方向向量的直线相交于点P,其中λ∈R,试问:是否存在两个定点E、F,使得|PE|+|PF|为定值,若存在,求出E、F的坐标;若不存在,说明理由。 如果曲线C上的点的坐标(x,y)都是方程F(x,y)=0的解,那么 [ ] A.以方程F(x,y)=0的解为坐标的点都在曲线C上
B.以方程F(x,y)=0的解为坐标的点有些不在曲线C上
C.不在曲线C上的点的坐标都不是方程F(x,y)=0的解
D.坐标不满足F(x,y)=0的点不在C上已知点C(1,0),点A,B是⊙O:x2+y2=9上任意两个不同的点,且满足,设P为弦AB的中点。 (1)求点P的轨迹T的方程;
(2)试探究在轨迹T上是否存在这样的点:它到直线x=-1的距离恰好等于到点C的距离?若存在,求出这样的点的坐标;若不存在,说明理由。已知曲线C:y=x2与直线l:x-y+2=0交于两点A(xA,yA)和B(xB,yB),且xA<xB。记曲线C在点A和点B之间那一段L与线段AB所围成的平面区域(含边界)为D。设点P(s,t)是L上的任一点,且点P与点A和点B均不重合,
(1)若点Q是线段AB的中点,试求线段PQ的中点M的轨迹方程;
(2)若曲线G:x2-2ax+y2-4y+a2+=0与点D有公共点,试求a的最小值。在平面直角坐标系xOy中,点P到点F(3,0)的距离的4倍与它到直线x=2的距离的3倍之和记为d,当P点运动时,d恒等于点P的横坐标与18之和,
(Ⅰ)求点P的轨迹C;
(Ⅱ)设过点F的直线l与轨迹C相交于M,N两点,求线段MN长度的最大值。如果曲线C上的点的坐标(x,y)都是方程F(x,y)=0的解,那么 [ ]
A.以方程F(x,y)=0的解为坐标的点都在曲线C上
B.以方程F(x,y)=0的解为坐标的点有些不在曲线C上
C.不在曲线C上的点的坐标都不是方程F(x,y)=0的解
D.坐标不满足F(x,y)=0的点不在C上求过定点(0,1)的直线被双曲线截得的弦中点轨迹方程。 已知点P是抛物线y=2x2+1上的动点,定点A(0,1),若点M分所成的比为2,则点M的轨迹是( )。 点M(1,-2)在方程x2-xy+ay+1=0的曲线上,则a的值等于( )。 若点P在曲线2x2-y=0上移动,则点A(0,-1)与点P连线中点M的轨迹方程是 [ ]
A.y=2x2
B.y=8x2
C.2y=8x2-1
D.2y=8x2+1已知坐标满足方程f(x ,y)=0 的点都在曲线C 上,则 [ ] A.曲线C上的点的坐标都适合方程f(x,y)=0
B.坐标不适合方程f(x,y)=0的点都不在曲线C上
C.不在曲线C上的点的坐标都不适合方程f(x,y)=0
D.不在曲线C上的点的坐标一定有些适合,也有些不适合方程f(x,y)=0确定方程的解集( ) 曲线是平面内与两个定点和的距离的积等于常数的点的轨迹,给出下列三个结论:
①曲线过坐标原点;
②曲线关于坐标原点对称;
③若点在曲线上,则的面积不大于.其中,所有正确结论的序号是( )在平面直角坐标系xOy中,曲线C1的参数方程为(φ为参数),曲线C2的参数方程为(a>b>0,φ为参数)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α与C1,C2各有一个交点.当α=0时,这两个交点间的距离为2,当α=时,这两个交点重合.
(I)分别说明C1,C2是什么曲线,并求出a与b的值;
(II)设当α=时,l与C1,C2的交点分别为A1,B1,当α=﹣时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积.已知曲线C的方程为x2+ay2=1(a∈R).
(1)讨论曲线C所表示的轨迹形状;
(2)若a≠﹣1时,直线y=x﹣1与曲线C相交于两点M,N,且|MN|= ,求曲线C的方程.已知曲线C:x2+y2﹣4ax+2ay﹣20+20a=0.
(1)证明:不论a取何实数,曲线C必过一定点;
(2)当a≠2时,证明曲线C是一个圆,且圆心在一条直线上;
(3)若曲线C与x轴相切,求a的值.如果命题“曲线C上的点的坐标都是方程f(x,y)=0的解”是正确的,则下列命题中正确的是( )