当前位置: > 设函数f(x)=ax2+bx+c,已知f(0)=1,f(x)=f(3-x),且函数f(x)的图象与直线x+y=0有且只有一个交点. (1)求函数f(x)的解析式; (2)当a>1/2时,若函数g(x)...
题目
设函数f(x)=ax2+bx+c,已知f(0)=1,f(x)=f(3-x),且函数f(x)的图象与直线x+y=0有且只有一个交点.
(1)求函数f(x)的解析式;
(2)当a>
1
2
时,若函数g(x)=
f(lnx)+k−1
lnx
在区间[e,e2]上是单调函数,求实数k的取值范围.

提问时间:2021-04-01

答案
(1)因为函数f(x)=ax2+bx+c,由f(0)=1,得c=1,所以f(x)=ax2+bx+1,
又f(x)=f(3-x),所以二次函数的对称轴为x=
3
2
,即-
b
2a
3
2
   ①
又函数f(x)的图象与直线x+y=0有且只有一个交点,联立
x+y=0
ax2+bx+1=y
得:ax2+(b+1)x+1=0
所以(b+1)2-4a=0    ②
解①②得:a=1,b=-3或a=
1
9
b=−
1
3

所以f(x)=x2-3x+1,或f(x)=
1
9
x2
1
3
x+1

(2)当a>
1
2
时,f(x)=x2-3x+1,
g(x)=
(lnx)2−3lnx+1+k−1
lnx
=lnx+
k
lnx
-3,
g(x)=
1
x
k
x•ln2x
=(1−
k
ln2x
1
x

因为函数定义域为(0,+∞)所以要使函数g(x)在区间[e,e2]上是单调函数,
所以需要1−
k
ln2x
≤0
或1-
k
ln2x
≥0
在[e,e2]上恒成立,
解得k≥4或k≤1.
(1)根据题目给出的f(0)=1,求出c的值,运用f(x)=f(3-x),求出函数对称轴,用函数f(x)的图象与直线x+y=0有且只有一个交点联立后由判别式等于0列式,最后联立方程组求得a、b的值,则解析式可求;
(2)把f(x)代入函数g(x),求导函数后让导函数在区间[e,e2]上恒大于0或恒小于0求解实数k的取值范围.

利用导数研究函数的单调性;函数解析式的求解及常用方法.

本题考查利用导数研究函数的单调性,会利用导数研究函数的单调区间以及根据函数的增减性得到函数的最值.掌握不等式恒成立时所取的条件.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.