当前位置: > 证明 x^b = x mod p 的解的个数是 gcd(b-1,p-1)....
题目
证明 x^b = x mod p 的解的个数是 gcd(b-1,p-1).
如题

提问时间:2021-03-21

答案
设 g是mod p意义下的一个原根. 则 g^(p-1)=1 mod p
且对于 k=1,2...p-2: g^k不=1 mod p
接下来,当p不整除x时:
可设x=g^y mod p
原方程化为 by=y mod (p-1) (y=1,2...p-1)
即 (b-1)y=0 mod (p-1)
即 (b-1)/gcd(b-1,p-1) ·y=0 mod (p-1)/gcd(b-1,p-1)
即 y=0 mod (p-1)/gcd(b-1,p-1)
这个方程在y=1,2...p-1下恰有gcd(b-1,p-1)个解
所以x^b=x mod p 的解应该有gcd(b-1,p-1)+1个,gcd(b-1,p-1)个是指非零的
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.