当前位置: > 直角梯形ABCD中,AD平行BC,角B等于90度,且AD+BC等于CD,第一问以CD为直径作圆O,求证...
题目
直角梯形ABCD中,AD平行BC,角B等于90度,且AD+BC等于CD,第一问以CD为直径作圆O,求证
第二问以CD为直径作圆O,求证
CD与圆O一点相切 上面就是一个abco的梯形,没有以谁为圆心

提问时间:2021-03-04

答案
第一问:
设AB中点为E,连接OE,则OE是梯形的中位线,可以得到OE//AD//BC,则OE⊥AB.
又中位线OE=(AD+BC)/2=CD/2
则可知AB垂直于OE,且垂距为半径,由圆的定理可知圆O与AB相切.
第二问:
AB的中点是E,连接DE,CE,作EF⊥CD于F
下面需要证明EF等于半径
设AB=2x
S梯形=1/2(AD+BC)*AB
=1/2CD*2x
S△ADE=AD*x/2,S△BCE=BC*x/2,S△CDE= CD*EF/2
则S总=AD*x/2+BC*x/2+CD*EF/2
=(AD+BC)x/2+CD*EF/2
=CD*x/2+CD*EF/2
由S梯形=S总可得EF=x
综上,E到CD的距离是圆的半径,则CD与圆相切.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.