题目
如图,∠BAC=90°,AB=AC,D点在AC上,E点在BA的延长线上,BD=CE,BD的延长线交CE于F,试证明:BF⊥CE.
提问时间:2021-03-03
答案
证明:∵∠BAC=90°,
∴∠CAE=∠BAC=90°.
在Rt△BAD和Rt△CAE中,
∴Rt△BAD≌Rt△CAE(HL),
∴∠ABD=∠ACE,又∠ADB=∠CDF,
∴∠ABD+∠ADB=∠ACE+∠CDF.
又∵∠ABD+∠ADB=90°.
∴∠ACE+∠CDF=90°,
∴∠BFC=90°,
∴BF⊥CE.
∴∠CAE=∠BAC=90°.
在Rt△BAD和Rt△CAE中,
|
∴Rt△BAD≌Rt△CAE(HL),
∴∠ABD=∠ACE,又∠ADB=∠CDF,
∴∠ABD+∠ADB=∠ACE+∠CDF.
又∵∠ABD+∠ADB=90°.
∴∠ACE+∠CDF=90°,
∴∠BFC=90°,
∴BF⊥CE.
先根据HL证明Rt△BAD≌Rt△CAE,从而得出∠ABD=∠ACE,根据角之间的转换从而得到∠BFC=90°,即BF⊥CE.
全等三角形的判定与性质.
此题主要考查全等三角形的判定和性质;发现并利用Rt△BAD≌Rt△CAE是正确解决本题的关键,做题时要充分利用题目中的已知条件.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1高一英语选择题,请高手指点(6)
- 2几道高中向量数量积的题目,
- 3在0.01mol/l的硫酸溶液中由水电离出的氢氧根浓度是多少
- 4面包店老板我想对你说怎么写
- 5A、B、C三种元素的原子核里都有几个质子,中子数分别为n-1,n,n+1,下列说法正确的是( )(说理由)
- 6下列的间接引语为什么要变成“have finished”
- 7He is the last ask me the question.有一处 错误.找出并改正.
- 8():()=四分之一=()%=20分之()=()填小数
- 9碳12的相对原子质量 碳13的质子数,核外电子数
- 10已知函数f(X)对一切实数,有f(x+2)=f(-x+4)且函数有10个零点,求零点和
热门考点