题目
若存在常数p>0,使得函数f(x)满足f(px)=f(px-p/2),x属于R,则f(x)的最小正周期是多少
那为什么f(2x)=f(2x+T)的周期是T/2呢?与上题有什么不同呢?
那为什么f(2x)=f(2x+T)的周期是T/2呢?与上题有什么不同呢?
提问时间:2021-02-26
答案
f(px)=f(px-p/2),
以x取代其中的px,
则:f(x)=f(x - p/2)
则f(x)的最小正周期是p/2
如果是f(2x)=f(2x+T),那么周期是T,不是T/2
如果是f(x)=f(x+ T/2),那么周期是T/2
以x取代其中的px,
则:f(x)=f(x - p/2)
则f(x)的最小正周期是p/2
如果是f(2x)=f(2x+T),那么周期是T,不是T/2
如果是f(x)=f(x+ T/2),那么周期是T/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点