当前位置: > 在正方形ABCD中,作∠EAF=45°,AE交CD于点E,AF交BC于F,AP⊥EF于点P.求证:AP=AB...
题目
在正方形ABCD中,作∠EAF=45°,AE交CD于点E,AF交BC于F,AP⊥EF于点P.求证:AP=AB

提问时间:2021-01-30

答案
证明:
延长CB到G,是BG=DE,连接AG
∵AB=AD,∠ADE=∠ABG=90º
∴⊿ADE≌⊿ABG(SAS)
∴AE=AG,∠DAE=∠BAG
∵∠EAF=45º,∠DAB=90º
∴∠DAE+∠BAF=∠DAB-∠EAF=45º
∴∠GAF=∠GAB+∠BAF=45º
∴∠EAF=∠GAF
又∵AF=AF
∴⊿EAF≌⊿GAF(SAS)
∴EF=FG
∵AP⊥EF,AB⊥FG
∴AP=AB【全等三角形对应边上的高相等】
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.