当前位置: > 如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF. 求证: (1)PE=PF; (2)点P在∠BAC的角平分线上....
题目
如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF.
求证:

(1)PE=PF;
(2)点P在∠BAC的角平分线上.

提问时间:2021-01-09

答案
证明:(1)如图,连接AP并延长,
∵PE⊥AB,PF⊥AC
∴∠AEP=∠AFP=90°
又AE=AF,AP=AP,
∵在Rt△AFP和Rt△AEP中
AP=AP
AE=AF

∴Rt△AEP≌Rt△AFP(HL),
∴PE=PF.
(2)∵Rt△AEP≌Rt△AFP,
∴∠EAP=∠FAP,
∴AP是∠BAC的角平分线,
故点P在∠BAC的角平分线上.
(1)连接AP,根据HL证明△APF≌△APE,可得到PE=PF;
(2)利用(1)中的全等,可得出∠FAP=∠EAP,那么点P在∠BAC的平分线上.

角平分线的性质;直角三角形全等的判定.

本题考查了三角形全等的判定和性质,以及角平分线的有关知识,作射线AP是解答本题的关键.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.