题目
根据函数单调性的定义,证明函数f (x)=-x3+1在(-∞,+∞)上是减函数.
提问时间:2021-01-02
答案
证明:证法一:在(-∞,+∞)上任取x1,x2且x1<x2
则f(x2)-f(x1)=x13-x23=(x1-x2)(x12+x1x2+x22)
∵x1<x2,
∴x1-x2<0.
当x1x2<0时,有x12+x1x2+x22=(x1+x2)2-x1x2>0;
当x1x2≥0时,有x12+x1x2+x22>0;
∴f(x2)-f(x1)=(x1-x2)(x12+x1x2+x22)<0.
即f(x2)<f(x1)
所以,函数f(x)=-x3+1在(-∞,+∞)上是减函数.
证法二:在(-∞,+∞)上任取x1,x2,且x1<x2,
则f(x2)-f(x1)=x13-x23=(x1-x2)(x12+x1x2+x22).
∵x1<x2,
∴x1-x2<0.
∵x1,x2不同时为零,
∴x12+x22>0.
又∵x12+x22>
(x12+x22)≥|x1x2|≥-x1x2
∴x12+x1x2+x22>0,
∴f(x2)-f(x1)=(x1-x2)(x12+x1x2+x22)<0.
即f(x2)<f(x1).
所以,函数f(x)=-x3+1在(-∞,+∞)上是减函数.
则f(x2)-f(x1)=x13-x23=(x1-x2)(x12+x1x2+x22)
∵x1<x2,
∴x1-x2<0.
当x1x2<0时,有x12+x1x2+x22=(x1+x2)2-x1x2>0;
当x1x2≥0时,有x12+x1x2+x22>0;
∴f(x2)-f(x1)=(x1-x2)(x12+x1x2+x22)<0.
即f(x2)<f(x1)
所以,函数f(x)=-x3+1在(-∞,+∞)上是减函数.
证法二:在(-∞,+∞)上任取x1,x2,且x1<x2,
则f(x2)-f(x1)=x13-x23=(x1-x2)(x12+x1x2+x22).
∵x1<x2,
∴x1-x2<0.
∵x1,x2不同时为零,
∴x12+x22>0.
又∵x12+x22>
1 |
2 |
∴x12+x1x2+x22>0,
∴f(x2)-f(x1)=(x1-x2)(x12+x1x2+x22)<0.
即f(x2)<f(x1).
所以,函数f(x)=-x3+1在(-∞,+∞)上是减函数.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1蘑菇 单词是什么
- 2下列有关人体与外界环境以及人体内的气***换过程的叙述中,正确的是( )
- 3真子集的个数公式是什么
- 4The sweet lasted to the end but the bitterness left only .
- 5如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从点A出发,沿边AD向点D以1cm/s的速度移动,点Q从点C出发沿边CB向点B以9cm/s的速度移
- 6三个质数的和为122,这三个质数的乘积的最大值是_.
- 7从旗杆的顶端系一条绳子,垂到地面还多2米,小刚拉起绳子下端绷紧,更好接触到地
- 8ab-前缀有哪些单词?
- 9一组对边平行,并且对角线互相垂直且相等的四边形可能是?
- 10反比例函数的图像是什么?