当前位置: > 等边三角形ABC的三条角平分线AD、BE、CF交于点O,则OD:OA=_....
题目
等边三角形ABC的三条角平分线AD、BE、CF交于点O,则OD:OA=______.

提问时间:2021-01-02

答案
如下图所示:
∵△ABC是等边三角形,AD、BE、CF为三条角平分线,
∴AD、BE、CF为三条高,
∴∠OAE=∠OCD=∠OCE=30°,CD=CE=
1
2
AB.
∵CO=CO,
∴△OCD≌△OCE.(SAS)
∴OE=OD.
∵在Rt△OEA中,
sin∠OAE=
OE
OA
=
1
2

∴OD:OA=1:2.
故答案为:1:2.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.