当前位置: > 设n阶实方阵A满足A^2-4A+3E=0,证明 B=(2E-A)^T(2E-A)是正定矩阵...
题目
设n阶实方阵A满足A^2-4A+3E=0,证明 B=(2E-A)^T(2E-A)是正定矩阵

提问时间:2020-12-17

答案
因为 A^2-4A+3E=0
所以 A(A-2E)-2(A-2E)-E=0
所以 (A-2E)(A-2E)=E
所以A-2E可逆
所以2E-A可逆
所以B=(2E-A)^T(2E-A)是正定矩阵
--正定合同于单位矩阵
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.