当前位置: > 设a,b∈(0,+∞),且a≠b,证明:a3+b3>a2b+ab2....
题目
设a,b∈(0,+∞),且a≠b,证明:a3+b3>a2b+ab2

提问时间:2020-12-16

答案
证明:(a3+b3)-(a2b+ab2)=(a3-a2b)+(b3-ab2)=(a+b)(a-b)2
又∵a,b∈(0,+∞),且a≠b,∴a+b>0,而(a-b)2>0.
∴(a+b)(a-b)2>0.
故(a3+b3)-(a2b+ab2)>0,
即a3+b3>a2b+ab2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.