当前位置: > 抛物线y^2=4x上一点P到准线的距离为d1,到直线x+2y-12=0的距离为d2,求d1+d2的最小值,...
题目
抛物线y^2=4x上一点P到准线的距离为d1,到直线x+2y-12=0的距离为d2,求d1+d2的最小值,

提问时间:2020-12-06

答案
点P到准线的距离等于P到焦点的距离,为PF
点P到直线x+2y-12=0的距离,设为PQ
则d1+d2=PQ+PF≥QF,既等于QF时,有最小值
QF为焦点(1,0)到直线的距离,为9/5*根号5
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.