当前位置: > 在双曲线x²/9-y²/4=1中被点P(2,1)平分的弦所在直线方程...
题目
在双曲线x²/9-y²/4=1中被点P(2,1)平分的弦所在直线方程
用参数方程的作法

提问时间:2020-10-30

答案
设参数方程为
X=2+t cos a 1
y=1+t sin a 2
x²/9-y²/4=1
(2+t cos a)^2/9-(1+t sin a)^2/4=1
化简得
(4cos2 a-9sin2 a)t^2+(16cosa-18sina)-29=0
弦被点P(2,1)平分
t1+t2=0
16cosa-18sina=0
8cosa-9sina=0
8*1-9*2得
8x-9y-7=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.