当前位置: > 八年级分式的运算...
题目
八年级分式的运算
如果(x^2-yz)/x(1-yz)=(y^2-xz)/y(1-xz),且x不等于y,x不等于0,y不等于0,z不等于0.
证明:x+y+z=1/x+1/y+1/z

提问时间:2020-10-24

答案
(x^2-yz)/x(1-yz)=(y^2-xz)/y(1-xz)
y(x^2-yz)(1-xz)=x(y^2-xz)(1-yz)
y(x^2-x^3z-yz+xyz^2)=x(y^2-y^3z-xz+xyz^2)
xy(x-y)-xyz(x+y)(x-y)-z(x+y)(y-x)+xyz^2(y-x)=0
两边同除以(x-y)
xy-xyz(x+y)+z(x+y)-xyz^2=0
两边同除以xyz
1/z-x-y+1/y+1/x-z=0
x+y+z=1/x+1/y+1/z
得出结论
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.