题目
已知f(x)是定义域在[-1,1]上的奇函数,当a,b∈[-1,1],且a+b≠0时有[f(a)+f(b)]/(a+b)>0.
若f(1)=1,f(x)≤m2-2bm+1对所有x∈[-1,1],b∈[-1.1]恒成立,求实数m的取值范围.
(-∞,-2]∪{0}∪[2,+∞)
若f(1)=1,f(x)≤m2-2bm+1对所有x∈[-1,1],b∈[-1.1]恒成立,求实数m的取值范围.
(-∞,-2]∪{0}∪[2,+∞)
提问时间:2020-10-15
答案
∵f(1)=1 且f(x )在[-1,1]上为增函数,对x∈[-1,1],有f(x)≤f(1)=1.
由题意,对所有的x∈[-1,1],b∈[-1,1],有f(x)≤m2-2bm+1恒成立,
应有m2-2bm+1≥1⇒m2-2bm≥0. 记g(b)=-2mb+m2,对所有的b∈[-1,1],g(b)≥0成立.
只需g(b)在[-1,1]上的最小值不小于零…(8分)
若m>0时,g(b)=-2mb+m2是减函数,故在[-1,1]上,b=1时有最小值,
且[g(b)]最小值=g(1)=-2m+m2≥0⇒m≥2;
若m=0时,g(b)=0,这时[g(b)]最小值=0满足题设,故m=0适合题意;
若m<0时,g(b)=-2mb+m2是增函数,故在[-1,1]上,b=-1时有最小值,
且[g(b)]最小值=g(-1)=2m+m2≥0⇒m≤-2.
综上可知,符合条件的m的取值范围是:m∈(-∞,-2]∪{0}∪[2,+∞).
由题意,对所有的x∈[-1,1],b∈[-1,1],有f(x)≤m2-2bm+1恒成立,
应有m2-2bm+1≥1⇒m2-2bm≥0. 记g(b)=-2mb+m2,对所有的b∈[-1,1],g(b)≥0成立.
只需g(b)在[-1,1]上的最小值不小于零…(8分)
若m>0时,g(b)=-2mb+m2是减函数,故在[-1,1]上,b=1时有最小值,
且[g(b)]最小值=g(1)=-2m+m2≥0⇒m≥2;
若m=0时,g(b)=0,这时[g(b)]最小值=0满足题设,故m=0适合题意;
若m<0时,g(b)=-2mb+m2是增函数,故在[-1,1]上,b=-1时有最小值,
且[g(b)]最小值=g(-1)=2m+m2≥0⇒m≤-2.
综上可知,符合条件的m的取值范围是:m∈(-∞,-2]∪{0}∪[2,+∞).
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1读了尊严这一课,我明白l
- 2一个正方体的棱长为2×10²毫米,①它的表面积是多少?②它的体积是多少?
- 3数学题求大神帮忙
- 4已知数列{an}的前n项和Sn=2an+1. ( I)求证:数列{an}是等比数列;( II)求出数列{an}的通项公式.
- 52-2*2-2*2*2-2*2*2*2-…-2的2008次方+2的2009次方等于多少?三分之二+九分之二+二十七分之二+…+...
- 6人类合理的生活应该是什么样的
- 7我现在极少饭后躺在沙发上也不再吃零食了 翻译
- 8若两条直线垂直和平行,则斜率的关系是?
- 91.一辆客车只有2/3(三分之二)的座位上坐了乘客,若乘客在增加6人,则已坐的座位和空座位的比是4:1,这辆车共有多少座位?
- 10《走一步,再走一步》这篇文章给我们什么启示?