当前位置: > 如图,P为等边三角形ABC内任意一点,PD垂直AB于D,PE垂直BC于E,PF垂直AC于F.求PD+PE+PF是定值...
题目
如图,P为等边三角形ABC内任意一点,PD垂直AB于D,PE垂直BC于E,PF垂直AC于F.求PD+PE+PF是定值

提问时间:2020-10-04

答案
证明:连结AP,BP,CP.
由于S_APB+S_BPC+S_CPA=S_ABC(S表示面积),
而S_APB=PD*AB/2,
S_BPC=BC*PE/2,
S_CPA=CA*PF/2,
AB=BC=CA,
所以
(PD+PE+PF)=2S_ABC/AB,亦即△ABC的高.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.