题目
已知F1(-C,0),F2(C,0)为椭圆X^2/a^2+y^2/b^2=1的两个焦点,P为椭圆上一点且PF1向量乘以PF2向量=C^2
则椭圆离心率e的取值范围是
则椭圆离心率e的取值范围是
提问时间:2020-09-06
答案
由题意可知:|F1F2|=2c,|PF1|+|PF2|=2a,
向量的数量积:PF1*PF2=|PF1|*|PF2|cos∠P=c²
在△PF1F2中,由余弦定理可得:
|F1F2|²=|PF1|²+|PF2|²-2|PF1|*|PF2|cos∠P
所以:(2c)²=|PF1|²+|PF2|²-2c²
即:|PF1|²+|PF2|²=6c²
又由均值定理知:|PF1|²+|PF2|² ≥ (|PF1|+|PF2|)²/2=2a²
所以:6c²≥2a²
即:c²/a²≥1/3
解得:c/a≥√3/3
所以:该椭圆的离心率e=c/a的取值范围是[√3/3,1)
向量的数量积:PF1*PF2=|PF1|*|PF2|cos∠P=c²
在△PF1F2中,由余弦定理可得:
|F1F2|²=|PF1|²+|PF2|²-2|PF1|*|PF2|cos∠P
所以:(2c)²=|PF1|²+|PF2|²-2c²
即:|PF1|²+|PF2|²=6c²
又由均值定理知:|PF1|²+|PF2|² ≥ (|PF1|+|PF2|)²/2=2a²
所以:6c²≥2a²
即:c²/a²≥1/3
解得:c/a≥√3/3
所以:该椭圆的离心率e=c/a的取值范围是[√3/3,1)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1一朝被蛇咬十年怕井绳什么意思
- 2急,今晚就用
- 3《张溥嗜学》的道理 急用~~~~~~~~~~~~~~~~
- 4把边长为a的等边三角形铁皮剪去三个相同的四边形后,用剩余部分做成一个无盖的正三棱柱行容器,设容器的高
- 51.(x²-x²-y²)²-4x²y²分解因式 2.x四次方-5x²+4分解因式
- 6看看这个动物用英语怎么说
- 7把50克纯酒精装满一个瓶子,用去5千克后,加满了水,又用去5克后再加满水,这时瓶中水与酒精溶液的百分比是多少?
- 8安塞腰鼓的语句赏析,要有赏析的理由与赏析的段落,明天就上课了!
- 9题:已知直线(a-2)y=(3a-1)x-1
- 10will become more and more richer after ten years .Everything will change.For example:I will not go
热门考点
- 1一夜的工作 课文的最后两个自然段段表达了怎样的思想感情
- 2甲乙丙的次序轮流做一工程,恰好整数天完成,如按乙丙甲次序轮流,比原计划多用1|3天 如甲乙丙合作 需13又7|9
- 313=2分之X+3
- 4So high ----- the house price in Beijing that he decided to return to his hometown for developing.
- 5c(1,n)+c(2,n)+……+c(n,n)=2^n的证明
- 6弹簧秤下挂一金属块,示数1.6牛.放入盛有某种液体量筒内,示数从60毫升升到80毫升,弹簧秤示数1.35牛.求
- 7如图所示,劲度系数均为k的甲、乙两轻质弹簧,甲弹簧一端固定在天花板上,乙弹簧一端固定在水平地面上.当在甲的另一端挂一重物G,乙的另一端压一重物G时,两弹簧的长度均为L,现将
- 8两个电阻,R1,R2的阻值分别2欧姆4欧姆若二者串联组成电路,且电路极端口电压为6V测二者串联后等效电阻
- 9白炽灯泡功率小的都抽成真空,其作用主要是防止________.
- 10电场力的运算