当前位置: > 如图,在正方体ABCD-A1B1C1D1中,已知M为棱AB的中点. (1)证明:AC1∥平面B1MC; (2)证明:平面D1B1C⊥平面B1MC....
题目
如图,在正方体ABCD-A1B1C1D1中,已知M为棱AB的中点.

(1)证明:AC1∥平面B1MC;
(2)证明:平面D1B1C⊥平面B1MC.

提问时间:2020-08-09

答案
证明:(1)如图,
连接BC1交B1C于点O,则O是BC1的中点,
又因为M 是AB的中点,连接OM,则OM∥AC1
因为OM⊂平面B1MC,AC1⊄平面B1MC,
所以AC1∥平面B1MC.
(2)因为AB⊥平面BCC1B1,B1C⊂平面BCC1B1
所以AB⊥B1C.
又因为B1C⊥BC1,且AB∩BC1=B,所以B1C⊥平面ABC1
因为AC1⊂平面ABC1,AC1⊥B1C.
同理,AC1⊥B1D1.因为B1D1∩B1C=B1
所以AC1⊥平面D1B1C.
因为OM∥AC1,所以OM⊥平面D1B1C.OM⊂平面B1MC,所以平面D1B1C⊥平面B1MC.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.