当前位置: > 若M为△ABC所在平面内一点,且满足(MA-MC)(MB+MC)(MB+MC-2MA)=0,则△ABC的形状为...
题目
若M为△ABC所在平面内一点,且满足(MA-MC)(MB+MC)(MB+MC-2MA)=0,则△ABC的形状为

提问时间:2020-08-07

答案
可以判断为等腰三角形,因为原式向量MB-MC为CB,(MB+MC-2MA)=(MB-MA+MC-MA)=AB+AC,令向量(AB+AC)=AQ则其必过BC的中点,AQ与CB、(MB+MC)相乘为0,而M为任意一点,(MB+MC)不一定与BC垂直,故AQ与BC垂直
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.