当前位置: > 设m×n矩阵A的秩r(A)=n-3(n>3),α,β,γ是齐次线性方程组Ax=0的三个线性无关的解向量,则方程组Ax=0的基础解系为( )...
题目
设m×n矩阵A的秩r(A)=n-3(n>3),α,β,γ是齐次线性方程组Ax=0的三个线性无关的解向量,则方程组Ax=0的基础解系为( )
A.α,β,α+β B.β,γ,γ-β
C.α-β,β-γ,γ-α D.α,α+β,α+β+γ

提问时间:2020-08-02

答案
D
因为A B C中的三个向量都显然是线性相关的,不符合基础解系的定义,用排除法都应该选D了
其次D确实是对的,因为α,β,γ构成了解空间的一组基,所以α,α+β,α+β+γ同样也是一组基
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.