当前位置: > 椭圆x24+y22=1中过P(1,1)的弦恰好被P点平分,则此弦所在直线的方程是_....
题目
椭圆
x2
4
+
y2
2
=1
中过P(1,1)的弦恰好被P点平分,则此弦所在直线的方程是______.

提问时间:2020-07-13

答案
直线与椭圆的两个交点坐标为(x1,y1);(x2,y2)则
x12
4
+
y12
2
=1
x22
4
+
y22
2
=1
两式相减得
(x1+x2)(x1x2)
4
+
(y1+y2)(y1y2)
2
=0

∵P(1,1)为中点
2(x1x2)
4
+
2(y1y2)
2
=0

∴直线的斜率为k=
y2y1
x2x1
=−
1
2

∴此弦所在直线的方程是y−1=−
1
2
(x−1)

即x+2y-3=0
故答案为x+2y-3=0
设出两个交点的坐标,将它们代入椭圆的方程,将两个式子相减得到有关相交弦的中点与相减弦所在直线的斜率关系,求出直线的斜率,利用点斜式写出直线的方程.

直线与圆锥曲线的关系.

解决直线与圆锥曲线相交关于相交弦的问题,一般利用将交点坐标代入圆锥曲线的方程,两个式子相减得到中点与斜率的关系.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.