当前位置: > 已知a,b为常数,若f(x)=x2+4x+3,f(ax+b)=x2+10x+24,则求5a-b的值....
题目
已知a,b为常数,若f(x)=x2+4x+3,f(ax+b)=x2+10x+24,则求5a-b的值.

提问时间:2020-06-13

答案
由f(x)=x2+4x+3,f(ax+b)=x2+10x+24,得
(ax+b)2+4(ax+b)+3=x2+10x+24,
即a2x2+2abx+b2+4ax+4b+3=x2+10x+24.
比较系数得
a2=1
2ab+4a=10
b2+4b+3=24

求得a=-1,b=-7,或a=1,b=3,
a=1
b=3
时,5a-b=2; 
a=−1
b=−7
时,5a-b=2,
综上:5a-b=2.
将ax+b代入函数f(x)的解析式求出f(ax+b),代入已知等式,令等式左右两边的对应项的系数相等,列出方程组,求出a,b的值.

函数的零点.

本题考查知f(x)的解析式求f(ax+b)的解析式用代入法.属于基础题.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.