当前位置:高中试题 > 物理试题 > 粒子在复合场中运动 > (14分)如图所示,相距为d的平行金属板M、N间存在匀强电场和垂直纸面向里、磁感应强度为Bo的匀强磁场;在xoy直角坐标平面内,第一象限有沿y轴负方向场强为E的...
题目
题型:不详难度:来源:
(14分)如图所示,相距为d的平行金属板M、N间存在匀强电场和垂直纸面向里、磁感应强度为Bo的匀强磁场;在xoy直角坐标平面内,第一象限有沿y轴负方向场强为E的匀强电场,第四象限有垂直坐标平面向里、磁感应强度为B的匀强磁场。一质量为m、电量为q的正离子(不计重力)以初速度Vo沿平行于金属板方向射入两板间并做匀速直线运动。从P点垂直y轴进入第一象限,经过x轴上的A点射出电场,进入磁场。已知离子过A点时的速度方向与x轴成45o角。求:

(1)金属板M、N间的电压U;
(2)离子运动到A点时速度V的大小和由P点运动到A点所需时间t;
(3)离子第一次离开第四象限磁场区域的位置C(图中未画出)与坐标原点的距离OC。
答案
(1) (2)  (3)
解析

试题分析:离子的运动轨迹如下图所示

(1)设平行金属板M、N间匀强电场的场强为,则有: 
因离子所受重力不计,所以在平行金属板间只受有电场力和洛伦兹力,又因离子沿平行于金属板方向射入两板间并做匀速直线运动,则由平衡条件得:  
解得:金属板M、N间的电压 
(2)在第一象限的电场中离子做类平抛运动,则由运动的合成与分解得:
故离子运动到A点时的速度:
根据牛顿第二定律: 
设离子电场中运动时间t ,出电场时在y方向上的速度为,则在y方向上根据运动学公式得
联立以上各式解得,离子在电场E中运动到A点所需时间:
(3)在磁场中离子做匀速圆周运动,洛伦兹力提供向心力,则由牛顿第二定律有:
解得:
由几何知识可得
在电场中,x方向上离子做匀速直线运动,则
因此离子第一次离开第四象限磁场区域的位置C与坐标原点的距离为:

核心考点
试题【(14分)如图所示,相距为d的平行金属板M、N间存在匀强电场和垂直纸面向里、磁感应强度为Bo的匀强磁场;在xoy直角坐标平面内,第一象限有沿y轴负方向场强为E的】;主要考察你对粒子在复合场中运动等知识点的理解。[详细]
举一反三
(18分)图所示为回旋加速器的示意图。它由两个铝制D型金属扁盒组成,两个D形盒正中间开有一条狭缝,两个D型盒处在匀强磁场中并接在高频交变电源上。在D1盒中心A处有离子源,它产生并发出的a粒子,经狭缝电压加速后,进入D2盒中。在磁场力的作用下运动半个圆周后,再次经狭缝电压加速。为保证粒子每次经过狭缝都被加速,设法使交变电压的周期与粒子在狭缝及磁场中运动的周期一致。如此周而复始,速度越来越 大,运动半径也越来越大,最后到达D型盒的边缘,以最大速度被导出。已知a粒子电荷量为q,质量为m,加速时电极间电压大小恒为U,磁场的磁感应强度为B,D型盒的半径为R,设 狭 缝 很 窄,粒子通过狭缝的时间可以忽略不计,设α粒子从离子源发出时的初速度为零。(不计α粒子重力)求:

(1) α粒子第一次被加速后进入D2盒中时的速度大小;
(2) α粒子被加速后获得的最大动能Ek和交变电压的频率f;
(3)α粒子在第n次由D1盒进入D2盒与紧接着第n+1次由D1盒进入D2盒位置之间的距离Δx。
题型:不详难度:| 查看答案
(18分)有一个1000匝的矩形线圈,两端通过导线与平行金属板AB相连(如图所示),线圈中有垂直纸面向外的匀强磁场;已知AB板长为,板间距离为。当穿过线圈的磁通量增大且变化率为时,有一比荷为的带正电粒子以初速度从上板的边缘射入板间,并恰好从下板的边缘射出;之后沿直线MN运动,又从N点射入另一垂直纸面向外磁感应强度为的圆形匀强磁场区(图中未画出),离开圆形磁场时速度方向偏转了。不计带电粒子的重力。试求

(1)AB板间的电压
(2)的大小
(3)圆形磁场区域的最小半径
题型:不详难度:| 查看答案
如图甲所示,电阻不计且间距L=lm的光滑平行金属导轨竖直放置,上端接一阻值R=2Ω的电阻,虚线OO′下方有垂直于导轨平面向里的匀强磁场,现将质量m="0.l" kg、电阻不计的金属杆ab从OO′上方某处由静止释放,金属杆在下落的过程中与导轨保持良好接触且始终水平。已知杆ab进入磁场时的速度v0 =1m/s,下落0.3 m的过程中加速度a与下落距离h的关系图象如图乙所示,g取10 m/s2,则
A.匀强磁场的磁感应强度为1T
B.ab杆下落0.3 m时金属杆的速度为1 m/s
C.ab杆下落0.3 m的过程中R上产生的热量为0.2 J
D.ab杆下落0.3 m的过程中通过R的电荷量为0.25 C

题型:不详难度:| 查看答案
如图所示,在xOy平面直角坐标系中,直角三角形MNL内存在垂直于xOy平面向里磁感应强度为B的匀强磁场,三角形的一直角边ML长为6a,落在y轴上,∠NML = 30°,其中位线OP在x轴上.电子束以相同的速度v0从y轴上-3a≤y≤0的区间垂直于y轴和磁场方向射入磁场,已知从y轴上y=-2a的点射入磁场的电子在磁场中的轨迹恰好经过点.若在直角坐标系xOy的第一象限区域内,加上方向沿y轴正方向、大小为E=Bv0的匀强电场,在x=3a处垂直于x轴放置一平面荧光屏,与x轴交点为Q.忽略电子间的相互作用,不计电子的重力.试求:

(1)电子的比荷;
(2)电子束从+y轴上射入电场的纵坐标范围;
(3)从磁场中垂直于y轴射入电场的电子打到荧光屏上距Q点的最远距离。
题型:不详难度:| 查看答案
下图是某装置的垂直截面图,虚线A1A2是垂直截面与磁场区边界面的交线,匀强磁场分布在A1A2的右侧区域,磁感应强度B="0.4" T,方向垂直纸面向外,A1A2与垂直截面上的水平线夹角为45°。A1A2在左侧,固定的薄板和等大的挡板均水平放置,它们与垂直截面交线分别为S1、S2,相距L="0.2" m。在薄板上P处开一小孔,P与A1A2线上点D的水平距离为L。在小孔处装一个电子快门。起初快门开启,一旦有带正电微粒通过小孔,快门立即关闭,此后每隔T=3.0×10-3s开启一此并瞬间关闭。从S1S2之间的某一位置水平发射一速度为v0的带正电微粒,它经过磁场区域后入射到P处小孔。通过小孔的微粒与档板发生碰撞而反弹,反弹速度大小是碰前的0.5倍。

(1)经过一次反弹直接从小孔射出的微粒,其初速度v0应为多少?
(2)求上述微粒从最初水平射入磁场到第二次离开磁场的时间。(忽略微粒所受重力影响,碰撞过程无电荷转移。已知微粒的荷质比C/kg。只考虑纸面上带电微粒的运动)
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.