当前位置:高中试题 > 数学试题 > 不等式 > (1)设a,b,c均为正实数,且a≠b≠c,求证:a3+b3>a2b+ab2(2)求证:3+22<2+7....
题目
题型:不详难度:来源:
(1)设a,b,c均为正实数,且a≠b≠c,求证:a3+b3>a2b+ab2
(2)求证:


3
+2


2
<2+


7
答案
(1)证明:(分析法)a3+b3>a2b+ab2 成立,
只需证(a+b)(a2-ab+b2)>ab(a+b)成立.
又因为a>0,故只需证a2-ab+b2>ab成立,
而依题设a≠b,则(a-b)2>0显然成立,由此命题得证.
(2)证明:∵


3
+2


2
和2+


7
都是正数,
要证


3
+2


2
<2+


7

只需证:(


3
+2


2
)2<(2+


7
)2

整理得:11+2


6
<11+2


7

即证:


6


7

即证6<7
∵6<7 当然成立
∴原不等式成立.
核心考点
试题【(1)设a,b,c均为正实数,且a≠b≠c,求证:a3+b3>a2b+ab2(2)求证:3+22<2+7.】;主要考察你对不等式等知识点的理解。[详细]
举一反三
(1)已知n≥0,试用分析法证明:


n+2
-


n+1


n+1
-


n

(2)已知a,b,c是全不相等的正实数,求证
b+c-a
a
+
a+c-b
b
+
a+b-c
c
>3
题型:不详难度:| 查看答案
(1)已知a,b>0,求证:a(b2+c2)+b(c2+a2)≥4abc.
(2)求证:


3
+


7
<2


5
题型:不详难度:| 查看答案
已知f(n)=1+
1
2
+
1
3
+…+
1
n
,n∈n*
,求证:
(1)当m<n(m∈N*)时,f(n)-f(m)>
n-m
n

(2)当n>1时,f(2n)>
n+2
2

(3)对于任意给定的正数M,总能找到一个正整数N0,使得当n>N0时,有f(n)>M.
题型:不详难度:| 查看答案
(附加题)是否存在常数c,使得不等式
x
2x+y+z
+
y
x+2y+z
+
z
x+y+2z
≤c≤
x
x+2y+z
+
y
x+y+2z
+
z
2x+y+z

对于任意正数x,y,z恒成立?试证明你的结论.
题型:不详难度:| 查看答案
某同学在一次研究性学习中发现,以下四个不等式都是正确的:
①(12+42)(92+52)≥(1×9+4×5)2
②[(-6)2)+82]×(22+122)≥[(-6)×2+8×12]2
③[(6.5)2+(8.2)2]×[(2.5)2+(12.5)2]≥[(6.5)×(2.5)+(8.2)×(12.5)]2
④(202+102)(1022+72)≥(20×102+10×7)2
请你观察这四个不等式:
(Ⅰ)猜想出一个一般性的结论(用字母表示);
(Ⅱ)证明你的结论.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.