当前位置:高中试题 > 数学试题 > 不等式 > (1)已知n≥0,试用分析法证明:n+2-n+1<n+1-n(2)已知a,b,c是全不相等的正实数,求证b+c-aa+a+c-bb+a+b-cc>3....
题目
题型:不详难度:来源:
(1)已知n≥0,试用分析法证明:


n+2
-


n+1


n+1
-


n

(2)已知a,b,c是全不相等的正实数,求证
b+c-a
a
+
a+c-b
b
+
a+b-c
c
>3
答案
证明:(1)要证上式成立,即证


n+2
+


n
>2


n+1

(


n+2
+


n
)
2
(2


n+1
)
2

即证n+1>


n2+2n

即(n+1)2>n2+2n即n2+2n+1>n2+2n,即证1>0,显然成立;
所以原命题成立
(2)证明:(分析法)
要证 
b+c-a
a
+
a+c-b
b
+
a+b-c
c
>3,
只需证明 
b
a
+
c
a
-1+
c
b
+
a
b
-1+
a
c
+
b
c
-1>3
即证
b
a
+
c
a
+
c
b
+
a
b
+
a
c
+
b
c
>6,
而事实上,由a,b,c是全不相等的正实数,
b
a
+
a
b
>2,
c
a
+
a
c
>2,
c
b
+
b
c
>2
b
a
+
c
a
+
c
b
+
a
b
+
a
c
+
b
c
>6,
b+c-a
a
+
a+c-b
b
+
a+b-c
c
>3,得证.
核心考点
试题【(1)已知n≥0,试用分析法证明:n+2-n+1<n+1-n(2)已知a,b,c是全不相等的正实数,求证b+c-aa+a+c-bb+a+b-cc>3.】;主要考察你对不等式等知识点的理解。[详细]
举一反三
(1)已知a,b>0,求证:a(b2+c2)+b(c2+a2)≥4abc.
(2)求证:


3
+


7
<2


5
题型:不详难度:| 查看答案
已知f(n)=1+
1
2
+
1
3
+…+
1
n
,n∈n*
,求证:
(1)当m<n(m∈N*)时,f(n)-f(m)>
n-m
n

(2)当n>1时,f(2n)>
n+2
2

(3)对于任意给定的正数M,总能找到一个正整数N0,使得当n>N0时,有f(n)>M.
题型:不详难度:| 查看答案
(附加题)是否存在常数c,使得不等式
x
2x+y+z
+
y
x+2y+z
+
z
x+y+2z
≤c≤
x
x+2y+z
+
y
x+y+2z
+
z
2x+y+z

对于任意正数x,y,z恒成立?试证明你的结论.
题型:不详难度:| 查看答案
某同学在一次研究性学习中发现,以下四个不等式都是正确的:
①(12+42)(92+52)≥(1×9+4×5)2
②[(-6)2)+82]×(22+122)≥[(-6)×2+8×12]2
③[(6.5)2+(8.2)2]×[(2.5)2+(12.5)2]≥[(6.5)×(2.5)+(8.2)×(12.5)]2
④(202+102)(1022+72)≥(20×102+10×7)2
请你观察这四个不等式:
(Ⅰ)猜想出一个一般性的结论(用字母表示);
(Ⅱ)证明你的结论.
题型:不详难度:| 查看答案
设x≥1,y≥1,证明:x+y+
1
xy
1
x
+
1
y
+xy
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.